Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 10/2012, s. 771-776
Małgorzata Drobnicka-Stępień1, Joanna Narbutt2, Irmina Olejniczak2, Anna Sysa-Jędrzejowska2, *Aleksandra Lesiak2
Niskie stężenie kwasu foliowego jako jeden z czynników predysponujących do rozwoju raków podstawnokomórkowych skóry
Low folic acid serum concentration as one of the factors leading to basal cell carcinoma development**
1Infectious and liver diseases ward, Bieganski Hospital, Łódź
Head of Department: prof. Zbigniew Deroń, MD, PhD
2Department of Dermatology, Medical University of Łódź
Head of Department: prof. Anna Sysa-Jędrzejowska, MD, PhD
Streszczenie
Rak podstawnokomórkowy skóry jest najczęściej występującym nowotworem wśród ludzi rasy białej, stanowi 80% nowo zdiagnozowanych guzów. Niedobór kwasu foliowego został ostatnio uznany za czynnik ryzyka w przypadku kilku nowotworów złośliwych.
Cel. Ocena roli metabolizmu kwasu foliowego w procesie karcynogenezy u pacjentów z rakiem podstawnokomórkowym skóry poprzez oznaczenie stężenia kwasu foliowego w surowicy pacjentów chorych na raka podstawnokomórkowego i w grupie kontrolnej.
Materiały i metody. Grupa doświadczalna liczyła 125 pacjentów rasy białej, 79 osób (41 kobiet i 38 mężczyzn, średnia wieku – 60,2 lata, fototyp I/II – 20, III – 52, IV – 7) ze zdiagnozowanym na podstawie badania histopatologicznego rakiem podstawnokomórkowym skóry oraz 46 zdrowych ochotników (21 kobiet, 25 mężczyzn, średnia wieku – 58,4 lata. fototyp I/II – 10, III – 28, IV – 8). U wszystkich pacjentów pomiar stężenia kwasu foliowego w surowicy został przeprowadzony za pomocą Vitamin Folic Acid Test (DRG Vitamin Folic Acid, Mountainside, USA).
Wyniki. Stężenie kwasu foliowego było znacząco wyższe w grupie kontrolnej niż w grupie pacjentów z rakiem podstawnokomórkowym skóry (odpowiednio: mediana 16,5 μg/l vs. mediana 9,6 μg/l; p < 0,001). U większości badanych zarówno z grupy kontrolnej, jak i z grupy chorych na raka podstawnokomórkowego skóry stężenie kwasu foliowego w surowicy mieściło się w normalnych granicach.
Wnioski. Na podstawie otrzymanych wyników i danych zawartych w literaturze możemy stwierdzić, że kwas foliowy bierze udział w rozwoju raka podstawnokomórkowego skóry i jego niedobór może być uznany za jeden z czynników zwiększających ryzyko wystąpienia karcynogenezy skóry.
Summary
Basal cell carcinoma (BCC) is the most common neoplasm in Caucasian population, it represents over 80% of newly diagnosed tumors. Folic acid insufficiency has been recently considered as a risk factor for several cancers.
Aim. To assess the contribution of folic acid metabolism in the process of carcinogenesis in patients with BCC by determining the concentration of folic acid in the serum of patients with BCC and in control group.
Material and methods. Study group included 125 Caucasian subjects, 79 persons (41 women, 38 men, median age – 60.2 years, phototype: I/II – 20, III – 52, IV – 7) with BCC diagnosed on the basis of histopathological examination and 46 healthy volunteers (21 women, 25 men, median age – 58.4 years, phototype: I/II – 10, III – 28, IV – 8). In all patients serum folic acid concentration was measured with the use of Vitamin Folic Acid Test (DRG Vitamin Folic Acid, Mountainside, USA).
Results. Folic acid concentration was significantly higher in a control group than in BCC patients (median 16.5 μg/l vs. median 9.6 μg/l; respectively; p < 0.001). In most of the subjects both from control group and with BCC folic acid serum concentration was within normal limit.
Conclusions. Based on the obtained results and literature data we may conclude that the folic acid is involved in BCC development and its insufficiency may be concerned as one of the risk factors leading to skin cancerogenesis.



Recently increase in frequency of non-melanoma skin cancers (NMSC) which include basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) has been observed (1-3). Basal cell carcinoma is the most common neoplasm in Caucasians and in Australian population and it represents over 80% of newly diagnosed cancers (4). In white race its frequency estimates between 18 and 40% (5, 6).
Despite of low mortality, NMSC, as the most common tumors in USA, Europe and Australia, are the major medical, social and economic problem (5, 7, 8).
Folic acid is a complex of folates, among which pteroil-1glutamic acid is the most stable form, therefore it is used in diet supplements, while it is rarely found in nature. Folates are sensible to high temperature, sun radiation and low pH. The active folates in the organism that act as coenzymes in many metabolic reactions are 5-tetrahydrofolate derivatives. They transfer one-carbon units in synthesis of purine and pyrimidine nucleotides, are involved in the synthesis of deoxyribonucleic acid (DNA) and therefore are essential for the correct cell division. They also play an important role in the metabolism of amino acids. One of the major reaction is the methylation of homocysteine to methionine – an amino acid which is an important substrate for the methylation reactions (9). Methionine derived from food undergoes remethylation into homocysteine. Disconnected methyl group is used for methylation of various compounds such as phospholipids, proteins, DNA and RNA. Approximately 50% of homocysteine is converted with the participation of vitamin B6, to cysteine. The remaining 50% is remethylated to methionine. 5-methylenetetrahydrofolate and vitamin B12 are necessary for this reaction (10) (fig. 1).
Fig. 1. Folate metabolic pathway (9).
The active form of folic acid (5-methylenetetrahydrofolate) is involved in the synthesis of purines, pyrimidines and DNA synthesis, amino acid metabolism and in the synthesis and transformation of formates. It also plays an important role in tissues with high rates of cell division, especially in the hematopoietic system, gastrointestinal tract epithelia and fetal tissues. In addition, it is important in the process of myelination of nerve fibers. During pregnancy it prevents neural tube birth defects in the fetus (11, 12).
The role of folate in preventing the development of cancer is not fully elucidated. Epidemiological studies suggest an inverse relationship between folate intake and the occurrence of cancer of the colon, lung, pancreas, esophagus, stomach, cervix, prostate, ovarian, breast cancer and leukemia (13, 16).
Most of data concerns the role of folic acid in preventing colon cancer. Recent studies showed an inverse relationship between folate intake or blood folate levels and risk of colorectal cancer. The postulated link between folate deficiency and carcinogenesis is likely due to the participation of this vitamin in the synthesis of DNA. Folate deficiency is responsible for impairment of DNA methylation, increased chromosome fragility and decreased ability to repair damaged DNA fragments, which contributes to mutagenesis (15, 17-19).
There are only scarce data on the role of folate insufficiency in BCC development. Thus, the aim of the study was to assess the contribution of folic acid metabolism in the process of carcinogenesis in patients with BCC by determining the concentration of folic acid in the serum of patients with BCC and in control group.
Material and methods

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

24

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

59

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Lear JT, Smith AG: Basal cell carcinoma. Postgrad Med J 1997; 73: 538-542.
2. Lear JT, Tan BB, Smith AG et al.: Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients. J R Soc Med 1997; 90: 371-374.
3. Trakatelli M, Ulrich C, del Marmol V et al.: Epidemiology of nonmelanoma skin cancer (NMSC) in Europe: accurate and comparable data are needed for effective public health monitoring and interventions. Br J Dermatol 2007; 156: 1-7.
4. Katalinic A, Kunze U, Schäfer T: Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Br J Dermatol 2003; 149: 1200-1206.
5. English DR, Kricker A, Heenan PJ et al.: Incidence of non-melanocytic skin cancer in Geraldton, Western Australia. Int J Cancer 1997; 73: 629-633.
6. Wong CS, Strange RC, Lear JT: Basal cell carcinoma. BMJ 2003; 327:794-798.
7. Miller DL, Weinstock MA: Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 1994; 30: 774-778.
8. Richmond-Sinclair NM, Pandeya N, Ware RS et al.: Incidence of basal cell carcinoma multiplicity and detailed anatomic distribution: longitudinal study of an Australian population. J Invest Dermatol 2009; 129: 323-328.
9. Wagner C: Symposium on the subcellular compartmentation of folate metabolism. J Nutr 1996; 126 (4 Suppl.): 1228S-1234S.
10. Tam TT, Juzeniene A, Steindal AH et al.: Photodegradation of 5-methyltetrahydrofolate in the presence of uroporphyrin. J Photochem Photobiol B 2009; 94: 201-204.
11. Wolff T, Witkop CT, Miller T, Syed SB: Folic Acid Supplementation for the Prevention of Neural Tube Defects: An Update of the Evidence for the U.S. Preventive Services Task Force [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2009 May.
12. Bodnar LM, Himes KP, Venkataramanan R et al.: Maternal serum folate species in early pregnancy and risk of preterm birth. Am J Clin Nutr 2010; 92: 864-871.
13. Charles D, Ness AR, Campbell D et al.: Taking folate in pregnancy and risk of maternal breast cancer. BMJ 2004; 329: 1375-1376.
14. Hultdin J, Van Guelpen B, Bergh A et al.: Plasma folate, vitamin B12, and homocysteine and prostate cancer risk: a prospective study. Int J Cancer 2005; 113: 819-824.
15. Sanjoaquin MA, Allen N, Couto E et al.: Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer 2005; 113: 825-828.
16. Liu JJ, Ward RL: Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. Adv Genet 2010; 71: 79-121.
17. Giovannucci E, Chan AT: Role of vitamin and mineral supplementation and aspirin use in cancer survivors. J Clin Oncol 2010; 28: 4081-4085.
18. Giovannucci E, Rimm EB, Ascherio A et al.: Alcohol, low-methionine-low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst 1995; 87: 265-273.
19. Giovannucci E, Stampfer MJ, Colditz GA et al.: Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst 1993; 85: 875-884.
20. Nasser N: Epidemiology of basal cell carcinomas in Blumenau, SC, Brazil, from 1980 to 1999. An Bras Dermatol 2005; 80: 363-368.
21. de Vries E, Louwman M, Bastiaens M et al.: Rapid and continuous increases in incidence rates of basal cell carcinoma in the southeast Netherlands since 1973. J Invest Dermatol 2004; 123: 634-638.
22. Czarnecki D, Zalcberg J, Meehan C et al.: Familial occurrence of multiple nonmelanoma skin cancer. Cancer Genet Cytogenet 1992; 61: 1-5.
23. Cho S, Kim MH, Whang KK, Hahm JH: Clinical and histopathological characteristics of basal cell carcinoma in Korean patients. J Dermatol 1999; 26: 494-501.
24. Beattie PE, Finlan LE, Kernohan NM et al.: The effect of ultraviolet (UV) A1, UVB and solar-simulated radiation on p53 activation and p21. Br J Dermatol 2005; 152: 1001-1008.
25. Ceylan C, Oztürk G, Alper S: Non-melanoma skin cancers between the years of 1990 and 1999 in Izmir, Turkey: demographic and clinicopathological characteristics. J Dermatol 2003; 30: 123-131.
26. Raasch BA, Buettner PG, Garbe C: Basal cell carcinoma: histological classification and body-site distribution. Br J Dermatol 2006; 155: 401-407.
27. Neale RE, Davis M, Pandeya N et al.: Basal cell carcinoma on the trunk is associated with excessive sun exposure. J Am Acad Dermatol 2007; 56: 380-386.
28. Coups EJ, Manne SL, Heckman CJ: Multiple skin cancer risk behaviors in the U.S. population. Am J Prev Med 2008; 34: 87-93.
29. Marehbian J, Colt JS, Baris D et al.: Occupation and keratinocyte cancer risk: a population-based case-control study. Cancer Causes Control 2007; 18: 895-908.
30. Egeler RM, Favara BE, van Meurs M et al.: Differential In situ cytokine profiles of Langerhans-like cells and T cells in Langerhans cell histiocytosis: abundant expression of cytokines relevant to disease and treatment. Blood 1999; 94: 4195-4201.
31. Bath-Hextall F, Leonardi-Bee J, Smith C et al.: Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database study. Int J Cancer 2007; 121: 2105-2108.
32. Faurschou A, Wulf HC: Ecological analysis of realation between sunbeds and skin cancer. Photodermatol Photoimmunol Photomed 2007; 4: 120-125.
33. Lovatt TJ, Lear JT, Bastrilles J et al.: Associations between ultraviolet radiation, basal cell carcinoma site and histology, host characteristics, and rate of development of further tumors. J Am Acad Dermatol 2005; 52: 468-473.
34. Scrivener Y, Grosshans E, Cribier B: Variations of basal cell carcinomas according to gender, age, location and histopathological subtype. Br J Dermatol 2002; 147: 41-47.
35. Daya-Grosjean L, Dumaz N, Sarasin A: The specificity of p53 mutation spectra in sunlight induced human cancers. J Photochem Photobiol B 1995; 28: 115-124.
36. Garssen J, van Loveren H: Effects of ultraviolet exposure on the immune system. Crit Rev Immunol 2001; 21: 359-397.
37. Diffey BL: Sources and measurement of ultraviolet radiation. Methods 2002; 28: 4-13.
38. Żak-Prelich M, Sysa-Jędrzejowska A, Narbutt J: Environmental risk factors predisposing to the development of basal cell carcinoma. Dermatologic Surgery 2004; 30: 248-252.
39. Narbutt J, Lesiak A, Ekiert A, Sysa-Jędrzejowska A: Environmental factors in nonmelanoma skin cancer development. Polish J Environ Studies 2005; 14: 545-550.
40. Duthie SJ: Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 1999; 55: 578-592.
41. Das PM, Singal R: DNA methylation and cancer. J Clin Oncol 2004; 22: 4632-4642.
42. Cheah MS, Wallace CD, Hoffman RM: Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene. J Natl Cancer Inst 1984; 73: 1057-1065.
43. Wainfan E, Dizik M, Stender M, Christman JK: Rapid appearance of hypomethylated DNA in livers of rats fed cancer promoting, methyl-deficient diets. Cancer Res 1989; 49: 4094-4097.
44. Branda RF, Blickensderfer DB: Folate deficiency increases genetic damage caused by alkylating agents and gamma-irradiation in Chinese hamster ovary cells. Cancer Res 1993; 53: 5401-5408.
45. Sancar A: Mechanism of DNA excision repair. Science 1994; 266: 1954-1956.
46. Jacob RA, Gretz DM, Taylor PC et al.: Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 1998; 128: 1204-1212.
47. Lajous M, Lazcano-Ponce E, Hernandez-Avila M et al.: Folate, vitamin B(6), and vitamin B(12) intake and the risk of breast cancer among Mexican women Cancer Epidemiol Biomarkers Prev 2006; 15: 443-448.
48. Kim YI: Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer. Cancer Epidemiol Biomarkers Prev 2004; 13: 511-519.
49. Zhang SM: Role of vitamins in the risk, prevention and treatment of breast cancer. Curr Opin Obstet Gynecol 2004; 16: 19-25.
50. Hussien MM, McNulty H, Armstrong N et al.: Investigation of systemic folate status, impact of alcohol intake and levels of DNA damage in mononuclear cells of breast cancer patients.Br J Cancer 2005; 92: 1524-1530.
51. Laing ME, Cummins R, O’Grady A et al.: Aberrant DNA methylation associated with MTHFR C677Tgenetic polymorphism in cutaneous squamous cell carcinoma in renal transplant patients. Br J Drmatol 2010; 163: 345-352.
otrzymano: 2012-08-22
zaakceptowano do druku: 2012-09-28

Adres do korespondencji:
*Aleksandra Lesiak
Department of Dermatology
Medical University of Łódź
ul. Krzemieniecka 5, 94-014 Łódź
tel.: +48 (42) 686-79-81
e-mail: aleksandra.lesiak@umed.lodz.pl

Postępy Nauk Medycznych 10/2012
Strona internetowa czasopisma Postępy Nauk Medycznych