Ludzkie koronawirusy - autor: Krzysztof Pyrć z Zakładu Mikrobiologii, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Kraków

Zastanawiasz się, jak wydać pracę doktorską, habilitacyjną lub monografię? Chcesz dokonać zmian w stylistyce i interpunkcji tekstu naukowego? Nic prostszego! Zaufaj Wydawnictwu Borgis – wydawcy renomowanych książek i czasopism medycznych. Zapewniamy przede wszystkim profesjonalne wsparcie w przygotowaniu pracy, opracowanie dokumentacji oraz druk pracy doktorskiej, magisterskiej, habilitacyjnej. Dzięki nam nie będziesz musiał zajmować się projektowaniem okładki oraz typografią książki.

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Fitoterapii 1/2013, s. 8-16
*Bogdan Kędzia, Elżbieta Hołderna-Kędzia
Działanie na bakterie i grzyby alkaloidów i innych grup związków roślinnych
The effect of alkaloids and other groups of plant compounds on bacteria and fungi
Instytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu
Dyrektor Instytutu: prof. dr hab. Grzegorz Spychalski
Summary
The studies included 35 substances belonging to alkaloids, coumarins, quinones, polyacetylenes, saponines and other chemical groups. It was documented that the strongest antibacterial activity on Gram-positive bacteria showed; shikonine and her derivates, berberine chloride, sanguinarine nitrate, falkarionol, digitonine and usnic acid. The sanguinarine nitrate and digitonine showed strong activity on Gram-negative bacteria. Imperatorine, sanguinarine nitrate, sempervirine, galantamine hydrobromide, falkarinol, alantolactone and aristolochic acid showed the strong activity against yeast fungi and dermatophytes. The mentioned substances inhibited the growth of bacteria in concentration limits 1-250 μg/ml. The conducted studies show the possibility of the use some plant substances in medical practice.
Wstęp
Wśród związków roślinnych o potencjalnym działaniu na bakterie i grzyby znalazły się alkaloidy, w tym alkaloidy izochinolinowe i steroidowe oraz alkaloidy z grupy Amaryllidaceae i Colchicum. Ponadto badaniami objęto wybrane kumaryny, chinony, poliacetyleny, saponiny i związki roślinne z innych grup chemicznych.
Cel pracy
Celem pracy była ocena działania przeciwdrobnoustrojowego substancji roślinnych należących do wymienionych grup chemicznych z punktu widzenia poznawczego oraz ewentualnego ich zastosowania w praktyce medycznej. W opracowaniu wykorzystano wyniki badań własnych, które wykonano w latach 1976-2012 (1, 2).
Materiał i metody
Badane substancje
Badania obejmowały 35 substancji, które pochodziły z obrotu handlowego oraz były izolowane z materiału roślinnego we własnym zakresie.
Z firmy Aldrich otrzymano: chlorek berberyny, chlorek palmatyny i umbeliferon. Natomiast z firmy Roth pochodziły następujące substancje roślinne: chelidonina, azotan sangwinaryny, tomatyna, tomatydyna, solanidyna, ksantotoksyna, digitonina, chlorowodorek prymuliny, kwas sorbowy, kapsaicyna, glukotropeolina, kwas usninowy, kwas aristolochiowy i katechina.
W Instytucie Roślin i Przetworów Zielarskich (obecnie Instytut Włókien Naturalnych i Roślin Zielarskich) w Poznaniu izolowano dla potrzeb naukowych następujące substancje użyte w badaniach: chlorek jatroryzyny (z korzenia Berberis vulgaris), semperwirynę (z kłączy Gelsemium sempervirens), bromowodorek solasodyny (z ziela Solanum laciniatum), chlorowodorek galantaminy (z bulw Galantus nivalis), kolchaminę (z nasion Colchicum autumnale), imperatorynę (z korzeni Archangelica officinalis), szikoninę, acetyloszikoninę, izopropyloszikoninę i acetoksyrojleanon (z korzeni Salvia officinalis), falkarinol i hydroksyfalkarinol (z korzeni Panax vietnamensis), poliacetylen o nieustalonej budowie chemicznej (z owoców Polyscias fruticosa), spiroeter (en-in-dicykloeter) (z olejku eterycznego otrzymanego z koszyczków Chamomilla recutita), konwalarynę i konwalamarynę (z liści Convallaria majalis), alantolakton (heleninę) (z kłączy Inula helenium) i synalbinę (z nasion Synapis alba).
Drobnoustroje
W badaniach używano szczepy wzorcowe pochodzące z następujących kolekcji mikrobiologicznych: ATCC (American Type Culture Collection), CNCTC (Czechoslovak National Collection of Type Cultures) oraz PZH (Państwowy Zakład Higieny). Poza tym do badań służyły szczepy drobnoustrojów wyizolowane z materiału szpitalnego (S) oraz z produktów żywnościowych (P).
Określanie aktywności przeciwdrobnoustrojowej
Badane substancje rozpuszczano w DMSO (firmy Serva) w stężeniu 100 lub 10 mg/ml i sporządzano z nich rozcieńczenia w podłożach płynnych. W przypadku bakterii używano podłoża Antibiotic Broth, a w przypadku grzybów podłoża Sabouraud Broth (oba podłoża firmy Merck). Oznaczenia prowadzono w granicach stężeń 1-1000 μg/ml. Do poszczególnych rozcieńczeń badanych substancji o objętości 1 ml dodawano po 0,1 ml 24-48 godz. hodowli bakterii lub grzybów drożdżoidalnych oraz 72 godz. hodowli dermatofitów i grzybów pleśniowych. Inokulum badanych drobnoustrojów mieściło się w granicach 105-106 komórek w 1 ml. Próbki inkubowano przez 24-48 godz. w temp 37°C (bakterie i grzyby drożdżoidalne chorobotwórcze dla człowieka oraz dermatofity) lub w temp. 25°C (grzyby drożdżoidalne i pleśniowe izolowane z produktów żywnościowych). Następnie określano najmniejsze stężenie badanych substancji hamujące wzrost użytych drobnoustrojów (MIC – Minimal Inhibitory Concentration).
Wyniki
Wyniki badań przedstawione w tabeli 1 wskazują, że chlorek berberyny (alkaloid izochinolinowy z grupy protoberberyny) działał na bakterie Gram-dodatnie wielokrotnie silniej (MIC w granicach 10-150 μg/ml) w porównaniu do bakterii Gram-ujemnych (MIC w granicach 50-2.000 μg/ml). Natomiast działanie chlorku berberyny oraz chlorku palmatyny i chlorku jatroryzyny, dwóch innych alkaloidów izochinolinowych z grupy protoberberyny, na grzyby drożdżoidalne i pleśniowe oraz dermatofity, było stosunkowo słabe (MIC w granicach 500-2500 μg/ml) (tab. 2).
Tabela 1. Działanie chlorku berberyny (alkaloidu izochinolinowego z grupy protoberberyny) na bakterie.
DrobnoustrojeMIC (μg/ml)
Chlorek berberyny
Bakterie Gram-dodatnie
    Staphylococcus aureus ATCC 6538P
    Staphylococcus aureus 1 (S)
    Streptococcus viridans OWG/76 (S)
    Streptococcus pyogenes OWG/253 (S)
    Streptococcus pneumoniae OWG8514 (S)
    Enterococcus faecalis ATCC 8040
    Corynebacterium sp. OWG/581 (S)
75
100
25
10
25
150
10
Bakterie Gram-ujemne
    Haemophilus influenzae OWG/112 (S)
    Haemophilus parainfluenzae OWG/178 (S)
    Escherichia coli PZH 026B6
    Klebsiella pneumoniae 231 (S)
    Citrobacter freundii 53 (S)
    Enterobacter cloacae 87 (S)
    Proteus mirabilis 11 (S)
    Pseudomonas aeruginosa OWG/89/9
50
100
1500
1500
1500
1000
2000
1000
Tabela 2. Działanie chlorku berberyny, chlorku palmatyny i chlorku jatroryzyny (alkaloidów izochinolinowych z grupy protoberberyny) na grzyby.
DrobnoustrojeMIC (μg/ml)
Chlorek berberynyChlorek palmatynyChlorek jatroryzyny
Grzyby drożdżoidalne
    Candida albicans PZH 1409 PCM
    Candida krusei S2 20 (S)
    Candida guilliermondii 11 (S)
    Candida parapsilosis CNCTC 8/44
    Geotrichum candidum OWG/25 (S)
    Saccharomyces cerevisiae Ja-64 (P)
    Torulopsis utilis CNCTC 32/49
    Cryptococcus neoformans 1972 (S)
1000
500
1000
750
500

1000
1000
1000


750

100
1000
1000
1000


1000


1000
1000
Grzyby pleśniowe
    Aspergillus fumigatus 15 (P)
    Penicillium notatum 18 (P)
    Scopulariopsis brevicaulis 7 (P)
    Cladosporium herbarum 3 (P)
2500
2500
1000
1000
2000
2500
1000
1500
2500
2500
1000
1000
Dermatofity
    Trichophyton mentagrophytes 32 (S)
    Trichophyton gypseum 870 G/41 (S)
    Microsporum gypseum 13 (S)
1000
1500
750
1000
1000
750
1000
1000
1000
Z danych przedstawionych w tabeli 3 można wnioskować, że chelidonina i azotan sangwinaryny (alkaloidy izochinolinowe z grupy benzofenantrydyny) różniły się zasadniczo w działaniu na bakterie i grzyby drożdżoidalne. Chelidonina działała na wymienione drobnoustroje wielokrotnie słabiej (MIC w granicach 500-1500 μg/ml) w porównaniu do azotanu sangwinaryny (MIC w granicach 10-250 μg/ml). Działanie chelidoniny na grzyby pleśniowe było podobne do działania tego alkaloidu na bakterie i grzyby drożdżoidalne (MIC w granicach 750-1500 μg/ml), natomiast na dermatofity chelidonina działała znacznie silniej (MIC w granicach 100-250 μg/ml).
Tabela 3. Działanie chelidoniny i azotanu sangwinaryny (alkaloidów izochinolinowych z grupy benzofenantrydyny) na bakterie i grzyby.
DrobnoustrojeMIC (μg/ml)
ChelidoninaAzotan sangwinaryny
Bakterie
    Staphylococcus aureus ATCC 6538P
    Pseudomonas aeruginosa NCTC 10663
500
1000
100
250
Grzyby drożdżoidalne
    Candida albicans PZH 1409 PCM
    Candida albicans CNCTC 49/64
    Candida krusei CNCTC 40/53
    Candida parapsilosis CNCTC 8/44
    Candida lipolytica CNCTC 4/44
    Saccharomyces cerevisiae CNCTC 53/67
    Saccharomyces cerevisiae Ja-64 (P)
    Saccharomyces carlsbergensis (P)
    Torulopsis utilis CNCTC 32/49
    Cryptococcus neoformans 1972 (S)
    Rhodotorula rubra R 36 (P)
750


1500
750



1000
750

100
100
200

100
100
10
100
100
100
100
Grzyby pleśniowe
    Aspergillus fumigatus 15 (P)
    Penicillium notatum 18 (P)
    Scopulariopsis brevicaulis 7 (P)
    Cladosporium herbarum 3 (P)
750
1000
1500
1000
 
Dermatofity
    Keratinomyces ajelloi 30 (S)
    Trichophyton mentagrophytes 32 (S)
    Trichophyton gypseum 13 (S)
250
100
250
 

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 30 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

Piśmiennictwo
1. Kędzia B, Hołderna-Kędzia E, Grabowska H. Poszukiwanie antybiotycznych substancji roślinnych. Dokumentacja tematu statutowego nr 24/91/Y. Inst Rośl Przetw Ziel, Poznań 1994. 2. Kędzia B, Hołderna-Kędzia E. Działanie antybiotyczne substancji roślinnych na drobnoustroje. Badania wykonane w latach 1976-2012. Dane nieopublikowane.
otrzymano: 2012-12-03
zaakceptowano do druku: 2012-12-05

Adres do korespondencji:
*prof. dr hab. Bogdan Kędzia
Instytut Włókien Naturalnych i Roślin Zielarskich
ul. Libelta 27, 61-707 Poznań
tel.: +48 (61) 665-95-50, fax: 665-95-51
e-mail: bogdan.kedzia@iwnirz.pl

Postępy Fitoterapii 1/2013
Strona internetowa czasopisma Postępy Fitoterapii