Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 5/2015, s. 347-350
Kateryna Goncharova1, 2, Marek Pieszka3, Rafal Filip4, *Stefan G. Pierzynowski1, 4
Oś zewnątrzwydzielnicza trzustka-mózg – badania na modelu świni domowej
Exocrine pancreas-brain axis – studies on pig models
1Department of Biology, Lund University, Sweden
Head of Department: prof. Christer Löfstedt, PhD
2Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
Head of Department: prof. Galyna Skibo, MD, PhD
3Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
Head of Department: prof. Franciszek Brzóska, PhD
4Institute of Rural Medicine, Lublin, Poland
Head of Department: prof. Iwona Bojar, MD, PhD
Streszczenie
Badania biomedyczne dowiodły, że zarówno przyzwyczajenia dietetyczne, styl życia (włączając w to skład i jakość diety), jak i aktywność fizyczna mają ogromny wpływ na ogólny stan zdrowia ludności na świecie. Nowe zalecenia dietetyczne, w tym wykorzystanie żywności funkcjonalnej, mogą zmniejszyć skutki niedożywienia, powstałego zazwyczaj w wyniku złych nawyków jedzeniowych i złej jakości żywności. Jednakże czynnik wewnętrzny – niestrawność – jest główną przyczyną niedożywienia obserwowanego we współczesnym starzejącym sie społeczeństwie. Jest on przede wszystkim wynikiem zaniechania produkcji enzymów trzustkowych w wieku starszym. Brak lub niski poziom enzymów trzustkowych jest powszechnie określony jako niewydolność zewnątrzwydzielnicza trzustki (NZT). NZT dzielimy na fizjologiczną – występującą u noworodków, oraz spontaniczną – pojawiającą się w podeszłym wieku. W obu przypadkach pozytywne efekty przynosi enzymatyczna terapia zastępcza preperatami trzustkowymi, np. Creon 10 000, lub enzymami trzustko-podobnymi pochodzenia mikrobiologicznego. Ostra niewydolność trzustki jest często związana ze zmianami neurologicznych, takimi jak obniżenie funkcji poznawczych i świadomości. Jednakże brakuje badań poświęconych funkcji mózgu i jego morfologii w warunkach NZT oraz skutków suplementacji diety enzymami trzustkowymi – zarówno w modelach ludzkich, jak i zwierzęcych.
Celem niniejszego przeglądu badań własnych jest pokazanie wpływu obecności aktywnych enzymów trzustkowych lub trzustko-podobnych w jelicie na morfologię i funkcje mózgu w modelu świńskim.
Summary
Biomedical research has proven that both diet and life style practices, including food compositiion, food quality, eating behavior, and physical activity profoundly affect the overall health status of the world’s population. New treatment approaches, including the use of functional food compounds can ameliorate the effects of the malnutrition which usually arises as a result of poor eating behaviours and poor food quality. Maldigestion, which is the main component of the malnutrition observed in modern society, is mainly a consequence of the lack of pancreatic enzymes. The absence or low level of pancreatic enzymes is commonly described as exocrine pancreas insufficiency (EPI). The EPI which occurs in newborns is an accepted physiologiocal state, while in the elderly it occurs as a result of age-related impairment of the exocrine pancreas. In both cases however, enzyme replacement therapy with pancreatic or pancreatic-like enzymes of microbial origin is applied to the patients. Pancreatic insufficiency (lack of active pancreatic enzymes in the gut) is often associated with marked neurological alterations related to cognitive function. However, studies dedicated to the investigation of brain function and morphology under conditions of malnutrition caused by EPI and the subsequent effects of dietary supplementation with pancreatic enzymes , are lacking – both in human and animal models.
The main aim of the present review was to describe the effects of the presence of active pancreatic or pancreatic-like enzymes within the gut, on brain morphology and function in a pig model.



Abbreviations: CCK – cholecystokinin; CFA – coefficient of fat absorption; EPI – exocrine pancreatic insufficiency; IgG – immunoglobulin G; LCPUFA – long chain polyunsaturated fatty acids; NCAM – neural cellular adhesion molecule; NEFA – non-esterified fatty acids; PLEM – pancreatic-like enzymes of microbial origin; TG – triacylglycerides
INTRODUCTION
Exocrine pancreatic insufficiency (EPI) is a major consequence of diseases that lead to the loss of pancreatic parenchyma (pancreatitis, cystic fibrosis or obstruction of the main pancreatic duct; decreased pancreatic stimulation, celiac disease) and/or the acid-mediated inactivation of pancreatic enzymes (Zollinger-Ellison syndrome). In addition, gastrointestinal and pancreatic surgical resections (e.g. gastrectomy, duodenopancreatectomy, gastric by-pass surgery) are frequent causes of EPI (1). Low levels of pancreatic enzyme secretion are also observed in piglets as well as in both pre-term and full term human babies (2-4) and elderly people (5, 6). A deficiency in pancreatic digestive enzymes may result in the maldigestion and malabsorption of essential nutrients, which can in turn lead to malnutrition and weight loss in adults and to impaired growth and development in young individuals, if left untreated (7). Conventional treatment of EPI involves replacement of pancreatic enzymes with a pancreatic enzyme preparation from pigs. But despite high doses of pancreatic enzymes used during therapy, normalisation of digestion does not often occur and only partial corrections of the malnutrition have been reported (8-10).
Acute and chronic pancreatic insufficiency is often associated with marked neurological alterations related to cognitive function (11). Many patients with chronic pancreatitis report symptoms that are associated with a decrease in cognitive function, such as depressive symptoms (12-14), sleep disturbances (15) and the use of opioid medication (16).
The potential application of pig models, which mimick EPI conditions, in the exploration of brain development and function in infants and individuals with chronic malfunction of the exocrine pancreas, such as patients with cystic fibrosis, patients following oncology surgery and the elderly (6, 17, 18) was investigated. We have proved that the EPI pig model is a sensitive tool which allows us to test the effects of the presence of active enzymes within the gut on the neurological status of the animal. Thus, the EPI pig model could serve as a promising, sensitive tool for the investigation of the mechanisms responsible for pancreatitis-related neurological alterations and their correction.
In elderly humans pancreatic function is reduced. Previous studies (5) have confirmed that the function of the pancreas in the elderly is impaired. Thus, one can postulate that low levels of pancreatic enzyme secretion are characteristic of both neonates and the aged. In both cases, the pancreas responds poorly to exogenous stimuli, such as the gut hormones of the cholecystokinin (CCK) family and secretin, which play an important role in the regulation of exocrine pancreas secretion.
A number of different animal models which mimick the lack of active pancreatic enzymes within the gut have been developed. The most common models used for this purpose are rodents (rats, mice) and pigs (both minipigs and regular pigs) (19). The porcine models are of importance for applied physiology and medicine, since at the functional and developmental level, humans and pigs share many similarities with regards to the gastrointestinal tract, genitourinary structures and the development of the brain and pancreas (20-22).
In the studies reviewed, it was of high priority to reveal the coherent possibilities of pig EPI models to serve as experimental tools mimicking conditions in human individuals with chronic malfunction of the exocrine pancreas/lack of active pancreatic enzymes in th gut. A coherent animal model which would allow us to investigate the neurological status of such patients, as decribed above, could serve as a powerful tool in understanding the mechanisms responsible for pancreatitis-related neurological alterations and the correction of such alterations.
Physiological EPI in newborn ungulates ensures proper brain development

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

24

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

59

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Zingg U, Oertli D: Functional syndromes after surgery of the upper gastrointestinal tract. Therapeutische Umschau 2012; 69: 39-47.
2. Jensen C, Buist NR, Wilson T: Absorption of individual fatty acids from long chain or medium chain triglyceride in very small infants. Am J Clin Nutr 1986; 43: 745-751.
3. Zoppi G, Andreotti G, Pajno-Ferrara F et al.: Exocrine pancreas function in pre-mature and full term neonates. Pediatr Res 1972; 96: 880-886.
4. Pierzynowski SG, Weström B, Karlsson B, Svendsen L: Development and regulation of porcine pancreas function – state-of-the-art. Int J Pancreatol 1995; 18: 81-94.
5. Majumdar AN, Jaszewski R, Dubick MA: Effect of aging on the gastrointestinal tract and the pancreas. Proc Soc Expl Biol Med 1997; 215: 134-144.
6. Al-Kaade S: Exocrine pancreatic insufficiency. Medscape Reference. Drugs, Diseases & Procedures 2013. http://emedicine.medscape.com/article/2121028-overview#showall.
7. Sinaasappel M, Stern M, Littlewood J et al.: Nutrition in patients with cystic fibrosis: a European consensus. J Cyst Fibr 2002; 1: 51-75.
8. Benabdeslam H, Garsia I, Bellon G et al.: Biochemical assessment of the nutritional status of cystic fibrosis patients treated with pancreatic enzyme extracts. Am J Clin Nutr 1998; 67: 912-918.
9. Tabeling R, Gregory PC, Kamphues J: Studies on nutrient digestibilities (pre-caecal and total) in pancreatic duct-ligated pigs and the effects of enzyme substitution. J Anim Physiol Anim Nutr 1999; 82: 251-263.
10. Kalnins D, Wilschanski M: Maintenance of nutritional status in patients with cysticfibrosis: new and emergingtherapies. Drug Des, Dev and Ther 2012; 6: 151-161.
11. Jongsma ML, Postma SA, Souren P et al.: Neurodegenerative properties of chronic pain: cognitive decline in patients with chronic pancreatitis. PLOS One 2011; 6: e23363.
12. Gomez RG, Fleming SH, Keller J et al.: The neuropsychological profile of psychotic major depression and its relation to cortisol. Biol psych 2006; 60: 472-478.
13. Gallassi R, Morreale A, Pagni P: The relationship between depression and cognition. Archs Geront Geriatr 2001; suppl. 7: 163-171.
14. Oosterman JM, Derksen LC, van Wijck AJ et al.: Memory functions in chronic pain: examining contributions of attention and age to test performance. Clinl J Pain 2011; 27: 70-75.
15. Goel N, Rao H, Durmer JS, Dinges DF: Neurocognitive consequences of sleep deprivation. Sem Neurol 2009; 29: 320-339.
16. Sjogren P, Thomsen AB, Olsen AK: Impaired neuropsychological performance in chronic nonmalignant pain patients receiving long-term oral opioid therapy. J Pain Sympt Manag 2000; 19: 100-108.
17. Caramia, G, Cocchi M: Fatty acids composition of plasma phospholipids and triglycerides in children with cystic fibrosis. The effect of dietary supplementation with an olive soybean oils mixture. Pediatr Medl Chir 1972; 1: 42-49.
18. Goncharova K, Pierzynowski S, Grujic D et al.: A piglet with surgically induced exocrine pancreatic insufficiency (EPI) as an animal model of newborns to study fat digestion. Br J Nutr 2014; 112: 2060-2067.
19. Hyun JJ, Lee HS: Experimental models of pancreatitis. Clin Endosc 2014; 47(3): 212-216.
20. Guilloteau P, Zabielski R, Hammon HM, Metges CC: Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev 2010; 23: 4-22.
21. Huang M: Differential tissues responses of (n-3) and (n-6) PUFA in neonatal piglets fed docosahexaenoate and arachidonoate. J Nutr 2007; 137: 2049-2055.
22. Conrad MS, Dilger RN, Johnson RW: Brain Growth of the Domestic Pig (Sus scrofa) from 2 to 24 Weeks of Age: A Longitudinal MRI Study. Dev Neurosci 2012; 34(4): 291-298.
23. Pierzynowski SG, Sharma P, Sobczyk J et al.: Comparative study of antibacterial activity of pancreatic juice in six mammalian species. Pancreas 1993; 8: 546-550.
24. Pierzynowski SG, Sharma P, Sobczyk J et al.: Influence of feeding regimen and postnatal developmental stages on antibacterial activity of the pancreatic juice. Int J Pancreatol 1992; 12: 121-125.
25. Salmon H, Berri M, Gerdts V, Meurens F: Humoral and cellular factors of maternal immunity in swine. Dev Comp Immunol 2009; 33(3): 384-393.
26. Lecce JG, Leary HL Jr, Clarke DA, Batema RP: Protection of agammaglobulinemic piglets from porcine rotavirus infection by antibody against simian rotavirus SA-11. J Clin Microbiol 1991; 29(7): 1382-1386.
27. Svendsen J, Weström BR, Olsson A-C: Intestinal macromolecular transmission in newborn pigs: Implications for management of neonatal pig survival and health. Livestock Production Science 2005; 97: 183-191.
28. Pierzynowski S, Ushakova G, Kovalenko T et al.: Impact of colostrum and plasma immunoglobulin intake on hippocampus structure during early postnatal development in pigs. Int J Dev Neurosci 2014; 35: 64-71.
29. Goncharova K, Kovalenko T, Osadchenko I et al.: Diet supplemented with pancreatic – like enzymes of microbial origin restores the hippocampal neuronal plasticity and behaviour in pigs model with experimental exocrine pancreatic insufficiency (EPI) (manuscript in press). J Funct Foods 2015.
30. Pierzynowski SG, Swieboda P, Filip R et al.: Behavioral changes in response to feeding pancreatic-like enzymes to exocrine pancreatic insufficiency pigs. J Anim Sci 2012; 90 (suppl. 4): 439-441.
otrzymano: 2015-03-05
zaakceptowano do druku: 2015-04-10

Adres do korespondencji:
*Stefan G. Pierzynowski
Department of Biology
Lund University
Sölvegatan 35, SE-223 62 Lund, Sweden
tel./fax +46 (0) 46 222-43-81
fax +46 (0) 46 222-45-39
stefan.pierzynowski@biol.lu.se

Postępy Nauk Medycznych 5/2015
Strona internetowa czasopisma Postępy Nauk Medycznych