Ludzkie koronawirusy - autor: Krzysztof Pyrć z Zakładu Mikrobiologii, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Kraków

Chcesz wydać pracę habilitacyjną, doktorską czy monografię? Zrób to w Wydawnictwie Borgis – jednym z najbardziej uznanych w Polsce wydawców książek i czasopism medycznych. W ramach współpracy otrzymasz pełne wsparcie w przygotowaniu książki – przede wszystkim korektę, skład, projekt graficzny okładki oraz profesjonalny druk. Wydawnictwo zapewnia szybkie terminy publikacji oraz doskonałą atmosferę współpracy z wysoko wykwalifikowanymi redaktorami, korektorami i specjalistami od składu. Oferuje także tłumaczenia artykułów naukowych, skanowanie materiałów potrzebnych do wydania książki oraz kompletowanie dorobku naukowego.

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Nauk Medycznych 2/2016, s. 92-96
*Adrianna Łoniewska-Lwowska1, Katarzyna Koza1, Katarzyna Branicka1, Marta Sobczyńska2, Alicja Sapała-Smoczyńska2, Teresa Jackowska2, Anna Adamowicz-Salach3, Ewa Mendek-Czajkowska4, Jadwiga Fabijańska-Mitek1
Defekty erytrocytarnych białek błonowych u polskich pacjentów ze sferocytozą wrodzoną
Defects of erythrocyte membrane proteins in Polish patients with hereditary spherocytosis
1Department of Immunohaematology, Centre of Postgraduate Medical Education, Warsaw
Head of Department: Jadwiga Fabijańska-Mitek, PhD, Associate Professor
2Department of Paediatrics, Centre of Postgraduate Medical Education, Warsaw
Head of Department: Teresa Jackowska, MD, PhD, Associate Professor
3Department of Paediatric Haematology and Oncology, Medical University of Warsaw
Head of Department: Prof. Michał Matysiak, MD, PhD
4Clinic for patients with congenital anemia, Institute of Hematology and Blood Transfusion, Warsaw
Head of Department: Ewa Mendek-Czajkowska, MD, PhD
Streszczenie
Wstęp. Sferocytoza wrodzona (HS) jest najczęstszą membranopatią krwinek czerwonych. Jest to zaburzenie bardzo niejednorodne zarówno na poziomie objawów klinicznych, sposobu dziedziczenia, jak i podstaw molekularnych. Defekt molekularny związany jest z wrodzonym niedoborem jednego lub kilku białek błonowych/cytoszkieletu: α-spektryny, β-spektryny, ankiryny, białka pasma 3 lub/i białka 4.2.
Cel pracy. Celem niniejszej pracy było zbadanie zmian białek błonowych/cytoszkieletu krwinek czerwonych leżących u podłoża HS u polskich pacjentów.
Materiał i metody. W celu jakościowego i ilościowego określenia defektów białek błonowych erytrocytów wykorzystano metodę elektroforezy w żelu poliakrylamidowym w obecności siarczanu dodecylu sodu (SDS-PAGE), a następnie analizę densytometryczną. Próbki krwi pochodziły od 41 pacjentów z HS.
Wyniki. Defekty białkowe związane z HS zaobserwowano w 40 z 41 próbek.
Wnioski. W analizowanej populacji zdecydowanie najczęściej występującym deficytem białkowym był niedobór ankiryny (73%). Kolejnym często identyfikowanym deficytem białkowym był niedobór α-spektryny (35%), a następnie białka 4.2 (27%), AE1 (27%) i β-spektryny (24%). Większość (85%) badanych próbek HS wykazała tzw. mieszany defekt białkowy. Natomiast tylko u 14,6% (6/41) badanej populacji zidentyfikowano tzw. izolowany deficyt białkowy, tj. niedobór ankiryny (4/40) i α-spektryny (2/40). Analizowano także rozkład niedoborów białkowych wśród członków 7 rodzin. Tylko w jednym przypadku wzór deficytów białkowych był taki sam u obu członków rodziny. Porównanie dostępnych wartości testu EMA ze zidentyfikowanymi deficytami białkowymi nie wykazało korelacji.
Summary
Introduction. Hereditary spherocytosis (HS) is the most common red blood cell (RBC) membrane disorder. This disorder is highly heterogeneous in clinical presentation, inheritance, molecular basis and biochemical phenotype. The molecular defect involves inherited deficiency of one or several of membrane/cytoskeleton proteins: α-spectrin, β-spectrin, ankyrin, anion exchanger 1 (AE1, protein band 3) or/and protein 4.2.
Aim. The aim of this study was to investigate alterations of red cell membrane proteins in previously HS diagnosed Polish patients.
Material and methods. To identify the RBC membrane defects, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by densitometric analysis was used. Blood samples were from 41 HS patients.
Results. Protein deficiency related to HS were showed in 40 from 41 samples.
Conclusions. In analyzed population ankyrin deficiency was of the highest percentage of occurrence (73%). The next frequent deficiency was spectrin α (35%) followed by protein 4.2 (27%), AE1 (27%) and spectrin β (24%). Most (85%) of the analyzed HS samples revealed combined deficiency. Only 15% (6/40) of HS patients showed isolated protein deficiency: ankyrin (4/41) and spectrin α (2/41). We also analyzed distribution of the protein deficiencies among members of 6 families. Only in one family the pattern of deficiencies was the same in both family members.
Introduction
Hereditary spherocytosis is the most common red blood cell (RBC) membrane disorder, that occurs in all ethnic groups, in Caucasians with the prevalence ranging from 1:2000 to 1:5000 (1). This disorder is highly heterogeneous in clinical presentation, inheritance, molecular basis and biochemical phenotype. HS is clinically characterized by anemia, jaundice, splenomegaly and gallstones. However the clinical severity of HS varies from symptom-free carrier to severe anemia. During microscopic examination of peripheral blood smear, RBC reveal spheroidal shape and the number of reticulocytes is significantly increased. The abnormal red cell morphology results in shortened cell survival due to RBC protein deficiency. Subjects with HS are characterized by inherited deficiency of one or several of membrane/cytoskeleton proteins: α-spectrin, β-spectrin, ankyrin, anion exchanger 1 (AE1, protein band 3) or/and protein 4.2. The molecular defect in one of the protein underlying HS is a cause of so-called primary deficiency. In some cases of HS more than one RBC membrane protein is deficient. This is because the primary protein defect “triggers” secondary protein deficiencies (2). Either a deficiency or dysfunction of one or more of RBC membrane proteins leads consequently to the detachment of the lipid bilayer from the spectrin-based cytoskeleton resulting in weakening of the vertical protein interaction (3, 4).
Single or combined protein deficiency in RBCs can be determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) (5).
In this study we report red cell membrane proteins alterations in previously HS diagnosed patients of Polish population by densitometric analysis of SDS-PAGE separated proteins.
Aim
In our study we aimed: 1) to identify RBC membrane protein defects in Polish HS patients, 2) to analyze the distribution of membrane protein defects among members of analyzed HS families, and 3) to correlate the defined by SDS-PAGE protein deficiencies with the values of EMA test.
Material and methods
In this study 41 consecutive HS patients and 60 healthy blood donors as controls were investigated. Peripheral blood was collected from patients and controls during diagnostic procedures after obtaining informed consent and approval from the Bioethics Committee of the Centre of Postgraduate Medical Education. The procedures were followed in accordance with the Helsinki international ethical standards on human experimentation.
Patients were from 31 unrelated families: 19 males and 22 females, range of age 1.5-74 years; 31 patients were aged < 18 and 10 were adults. Only four (three adults and one < 18 y.a) patients were splenectomized before the time of the study. In all but two cases, HS was diagnosed on the basis of the clinical history, physical examination ant the results of the laboratory tests: positive EMA (eosin-5-maleimide) binding assay, complete blood count, blood smear examination, reticulocyte count. None of the patients had had transfusions within the 3 months preceding the study.
Blood samples of healthy blood donors were used as a controls. For each RBC ghost preparation blood of three blood donors was taken and after separation from plasma and WBC, RBC were pooled and treated as a control sample.
Peripheral venous blood samples (4-10 ml) drawn from the patients and controls were collected on EDTA as anticoagulant and if needed stored in 4°C until processed, but no longer than 24 h. Erythrocyte ghost were prepared according to the Dodge et al. (6) with minor modifications. Briefly, erythrocyte suspension was washed with phosphate buffered saline (pH 7.2), and then cells were lysed with 5 mM phosphate buffer (pH 8.0) supplemented with 0.2M PMSF and spun at 15 000 x g for 15 min, 4°C. The supernatant was removed and cells were washed by using lysis buffer until haemoglobin-free ghosts were obtained. Purified RBC ghost were frozen in small aliquots in -70°C. Sample protein concentration was determined using Roti-Quant (Roth). Isolated membranes were subjected to SDS-PAGE in the Laemli buffer system (7). Gels were loaded with 20 μg of total membrane proteins. Before loading samples were denatured for 45 min in 37°C and reduced with sample buffer containing 5% β-mercaptoethanol. Polyacrylamide gels (8%, Rothiphorese, Roth), were stained with 0.012% Coomassie blue (R-250, Roth) in 10% ethanol, 5% acetic acid and destained in 10% ethanol and 5% acetic acid. The electrophoretic analysis for each RBC membrane protein sample from HS patient was performed in duplicate gels. Each gel was loaded as follows: controls, n = 3 and HS n = 6. Quantitative analyses were performed using ImageJ 1.48v Windows Application (8). Each band was quantified as an area under densitometry curve and its quantity was expressed as percent of total, when for total the sum of bands: α-spectrin, β-spectrin, ankyrin, anion exchanger1 (AE1), protein 4.1, protein 4.2 and actin was accounted. The level of each analyzed HS protein was compared to controls and presented as percent of control, assuming the level of control as 1.
Results
In this study 41 membrane protein samples of HS diagnosed patients have been analyzed. Quantitative analyses were performed using ImageJ 1.48v Windows Application (8). Each band was quantified as an area under densitometry curve and its quantity was expressed as percent of total, when for total the sum of bands: α-spectrin, β-spectrin, ankyrin, anion exchanger 1 (AE1), protein 4.1, protein 4.2 and actin was accounted. The level of analyzed RBC membrane protein was compared to controls and presented as proportional value, assuming the level of control as 1. As a relevant value of protein deficiency the deficit ≥ 5% was adopted.
Almost 100% (40/41) of HS patients clinically qualified to this analysis revealed abnormal level of RBC membrane proteins. In analyzed population, ankyrin deficiency was of the highest percentage of occurrence (73%). The next frequent deficiency defined was spectrin α (35%) followed by protein 4.2 (27%), AE1 (27%) and spectrin β (24%). Only one of the samples revealed no protein defects (tab. 1). Mean protein deficiency was the highest for ankyrin (22%; range 5-47%) followed by AE1 (16%; range 6-18%) and spectrin α (14%; range 4-14%). The deficit was the slightest in case of spectrin β, not exceeding 10% wit the average loss of protein amount at 5%. Most (85%) of the analyzed HS samples revealed combined deficiency. The distribution of types of protein defects combination is presented in table 2. The most common combined deficiencies were ankyrin + spectrin α (16% of analyzed population) and AE1 + ankyrin (13.5%) which is correlated with the highest percentage of occurrence of this three protein deficiencies. Only 15% (6/41) HS patients showed isolated protein deficiency: ankyrin (4/41) and (2/41).
Table 1. Appearance of red cell membrane protein deficiencies in Polish population
Defective proteins% of analyzed population with deficient proteinNumber of patientsMean protein deficiencyRange of protein deficiency
α-spectrin351314%4-14%
β-spectrin2495%5-10%
ankyrin732722%5-47%
AE1271016%6-18%
protein 4.2271010%8-23%
no protein defect31
Table 2. Distribution of combined protein deficiencies in Polish population
 Combined deficiency
ankyrin +α-spectrinankyrin+β-spectrinankyrin + protein 4.2β-spectrin + protein 4.2α + β-spectrinAE1+α-spectrinAE1+ankyrinα-spectrin + protein 4.2α + β-spectrin + protein 4.2AE1+ankyrin + protein 4.2
no of patients6/374/374/371/371/372/375/371/371/372/37
% of analyzed population1610102.72.75.413.52.72.75.4

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 30 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

Piśmiennictwo
1. Segel GB: Hereditary spherocytosis. [In:] Behrman RE, Kliegman RM, Jenson HB (eds.): Nelson’s Textbook of pediatrics. 17th ed. Saunders, Philadelphia, PA 2004: 1620-1621.
2. Rocha S, Costa E, Rocha-Pereira P et al.: Erythrocyte membrane protein destabilization versus clinical outcome in 160 Portuguese Hereditary Spherocytosis patients. Br J Haematol 2010 Jun; 149(5): 785-794.
3. Delaunay J: The molecular basis of hereditary red cell membrane disorders. Blood Reviews 2007; 21: 1-20.
4. Perrotta S, Gallagher PG, Mohandas N: Hereditary spherocytosis. Lancet 2008; 372: 1411-1426.
5. Bolton-Maggs PH, Langer JC, Iolascon A et al.; General Haematology Task Force of the British Committee for Standards in Haematology: Guidelines for the diagnosis and management of hereditary spherocytosis – 2011 update. Br J Haematol 2012 Jan; 156(1): 37-49.
6. Dodge JT, Mitchell C, Hanahan DJ: The preparation and chemical characteristics of haemoglobin free ghosts of human erythrocytes. Arch Biochem Biophys 1963; 100: 119-130.
7. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacterophage T4. Nature 1970; 227: 680-685.
8. Rasband WS: ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2015.
9. Ciepiela O, Adamowicz-Salach A, Bystrzycka W et al.: Mean corpuscular volume of control red blood cells determines the interpretation of eosin-5’-maleimide (EMA) test result in infants aged less than 6 months. Ann Hematol 2015 Aug; 94(8): 1277-1283.
10. Lux SE, Becker PS: Disorder of the red cell membrane skeleton: hereditary spherocytosis and hereditary elliptocytosis. [In:] Scriver RC, Beaudet AL, Sly WS, Valle D (eds.): The metabolic basis of inherited disease. 6th ed. McGraw-Hill, New York 1989: 2367-2408.
11. Agre P, Orringer EP, Bennet V: Deficient red cell spectrin in severe, recessively inherited spherocytosis. N Engl J Med 1982; 306: 1155-1161.
12. Agre P, Casella JF, Zinkham WH et al.: Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. Nature 1985; 314: 380-383.
13. King MJ, Behrens J, Rogers C et al.: Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia. Br J Haematol 2000 Dec; 111(3): 924-933.
14. Eber SW, Gonzalez JM, Lux ML et al.: Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nat Genet 1996 Jun; 13(2): 214-218.
15. Gallagher PG: Hematologically important mutations: ankyrin variants in hereditary spherocytosis. Blood Cells Mol Dis 2005; 35: 345-347.
16. Lux SE, Tse WT, Menninger JC et al.: Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature 1990; 345: 736-739.
17. Lanciotti M, Perutelli P, Valetto A et al.: Ankyrin deficiency is the most common defect in dominant and non dominant hereditary spherocytosis. Haematologica 1997; 82: 460-462.
18. Eber S, Lux SE: Hereditary spherocytosis – defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol 2004 Apr; 41(2): 118-141.
19. Miraglia del Giudice E, Iolascon A, Pinto L et al.: Erythrocyte membrane protein alterations underlying clinical heterogeneity in hereditary spherocytosis. Br J Haematol 1994 Sep; 88(1): 52-55.
20. Yawata Y, Kanzaki A, Yawata A et al.: Characteristic features of the genotype and phenotype of hereditary spherocytosis in the Japanese population. Int J Hematol 2000 Feb; 71(2): 118-135.
21. Premetis E, Stamoulakatou A, Loukopoulos D: Erythropoiesis: Hereditary Spherocytosis in Greece: Collective Data on a Large Number of Patients. Hematology 1999; 4(4): 361-366.
22. Ayhan AC, Yildiz I, Yüzbaş?oğlu S et al.: Erythrocyte membrane protein defects in hereditary spherocytosis patients in Turkish population. Hematology 2012 Jul; 17(4): 232-236.
23. Saad ST, Costa FF, Vicentim DL: Red cell membrane protein abnormalities in hereditary spherocytosis in Brazil. Br J Haematol 1994 Oct; 88(2): 295-299.
24. Bustos SP, Reithmeier RA: Protein 4.2 interaction with hereditary spherocytosis mutants of the cytoplasmic domain of human anion exchanger 1. Biochem J 2011; 433(2): 313-322.
26. Kedar PS, Colah RB, Kulkarni S et al.: Experience with eosin-5’-maleimide as a diagnostic tool for red cell membrane cytoskeleton disorders. Clin Lab Haematol 2003 Dec; 25(6): 373-376.
27. Golan DE, Corbett JD, Korsgren C et al.: Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites. Biophys J 1996 Mar; 70(3): 1534-1542.
28. Mohandas N, Chasis JA: Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 1993 Jul; 30(3): 171-192.
otrzymano: 2016-01-04
zaakceptowano do druku: 2016-01-29

Adres do korespondencji:
*Adrianna Łoniewska-Lwowska
Department of Immunohaematology Centre of Postgraduate Medical Education
ul. Marymoncka 99/103, 01-813 Warszawa
tel. +48 (22) 569-38-20
fax +48 (22) 569-38-29
adrianna.loniewska@gmail.com

Postępy Nauk Medycznych 2/2016
Strona internetowa czasopisma Postępy Nauk Medycznych