Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Nowa Stomatologia 1/2017, s. 30-38 | DOI: 10.5604/14266911.1235808
Dorota Olczak-Kowalczyk1, Monika Mysiak-Dębska2, Katarzyna Dębska-Łasut3, Wojciech Grzebieluch2, *Urszula Kaczmarek2
Food and dental caries. Part 1. Milk and dairy products
Pożywienie a próchnica zębów. Część 1. Mleko i produkty mleczne
1Department of Paediatric Dentistry, Medical University of Warsaw
Head of Department: Professor Dorota Olczak-Kowalczyk, DMD, PhD
2Department of Conservative and Paediatric Dentistry, Medical University of Wrocław
Head of Department: Professor Urszula Kaczmarek, DMD, PhD
3Department of Periodontology, Medical University of Wrocław
Head of Department: Professor Marek Ziętek, DMD, PhD
Mleko i produkty mleczne mają niski potencjał próchnicotwórczy i uznawane są za kariostatyczne. Wykazano ich działanie ochronne wobec próchnicy w badaniach na szczurach oraz in vitro i in situ. Analizy żywieniowe u ludzi potwierdzają także korzystne oddziaływanie konsumpcji mleka i produktów mlecznych. Mechanizm ich działania jest wieloraki i wynika ze złożonego składu chemicznego. Kazeiny i peptydy zmniejszają adhezję bakterii próchnicotwórczych i obniżają aktywność bakteryjnych glukozylotransferaz, powodując zmniejszenie biomasy i kwasotwórczości płytki oraz powstawanie nierozpuszczalnych polisacharydów bakteryjnych. Wolniejsza fermentacja laktozy niż sacharozy nie obniża pH płytki do poziomu krytycznego dla demineralizacji. Wysoka zawartość wapnia i fosforanów w mleku i jego produktach działa ochronnie wobec ataku kwasów poprzez przesycenie płytki i śliny jonami wapnia i fosforanowymi sprzyjającymi remineralizacji. Przeciwpróchnicowe działanie zawartej w mleku kazeiny wykorzystano, opracowując bioaktywny kompleks zawierający fosfopeptydy kazeiny (CPP) i amorficzny fosforan wapnia (ACP) wykorzystywany do kontroli próchnicy. Jednakże wykazano, że konsumpcja słodzonego mleka i produktów mlecznych powoduje pewien wzrost ryzyka próchnicy.
Milk and dairy products have a low cariogenic potential and are recognized to be cariostatic. Their protective influence against dental caries has been demonstrated in experiments on rats and in vitro or in situ studies. Analyses of dietary habits in humans also seem to confirm the beneficial impact of milk and dairy products consumption. Their mechanism of action is multiple, resulting from its complex chemical composition. Caseins and peptides reduce the adhesion of cariogenic bacteria, and diminish the acti-vity of bacterial glucosyltransferases, leading to the reduction of plaque biomass and acidity as well as formation of bacterial insoluble polysaccharides. The slower lactose than sucrose fermentation does not reduce dental plaque pH to the level critical for demineralization. The high content of calcium and phosphates in milk and dairy products ensures protection against acid attacks through biofilm saturation with calcium and phosphates, thus promoting remineralisation. Caries protective effect of casein present in milk has been used to formulate a bioactive complex containing casein phosphopeptides (CPP) and amorphous calcium phosphate (ACP), utilized for caries control. It has been showed however, that consumption of sweetened milk and diary products can lead to some increase of caries risk.
Oral health is to some degree related to the physical and chemical properties of the ingested foods. The relationship between frequent consumption of carbohydrates subject to fermentation (sucrose and processed starch) and the risk for caries has been well investigated and documented. Also the beneficial effect of polyols (sugar alcohols i.e. sweeteners not fermented by plaque bacteria) on teeth has been documented. Acidic foods, on the other hand, especially those containing citric and phosphoric acids may cause teeth erosion. Such knowledge has led to an increasing interest taken in the effect of food ingredients, both active and passive, on oral health cavity from the point of view of disease prevention (1). The idea of functional food, meaning foods consumed as a part of daily diet, containing factors that promote health and reduce the risk of various diseases was first introduced in Japan in the 1980s. Functional foods may be products based on natural ingredients, or enriched (fortified) with components of documented beneficial, pro-health effect (such as minerals, vitamins, plant extracts). Such foods, officially termed Foods for Specified Health Use (FOSHU) are produced in Japan on an industrial scale, yet have not been defined by legislation in Europe so far (2). Nonetheless, both active and passive effect of some functional food ingredients on health is recognized by the European Safety Authority (EFSA), including the beneficial impact of sugar-free gums on the condition of teeth (3).
The aim of this study is discuss foods whose ingredients may modulate the caries process. In part one the properties of milk and dairy products are presented, whereas part two discusses other ingredients containing polyphenols.
The chemical composition of milk and dairy products
For ages, milk and dairy products have been staples of human diet. In present times, it is mainly cow’s (bovine) milk and its derivatives (dairy products) that are consumed on a large scale. The annual intake of milk is estimated at 40.69 l per person, cheese 11-11.4 kg per person, and yoghurt 6.48 kg per person (4). Full fat (whole) milk is a liquid containing 87.4% water, and in its remaining part comprised in 4.7% by fat, 3.5% by protein (including 2.8% of casein and 0.6% of whey proteins), 4.8% by lactose and 0.6% by minerals. Overall, cow’s milk contains over 100 chemical components, among which proteins, calcium, phosphates, potassium, vitamins D, A, B12 and B3 are the most important nutrition-wise. The calorie content of milk and dairy products depends on their fat content. Milk is a heterogeneous combination of proteins, with casein playing a dominant role (80%). Using electrophoresis, casein may be separated into four components, namely alpha-, beta-, gamma- and kappa-casein. Casein precipitates only at a pH of 4.6, and this quality is used for cheese making. Whey proteins, that account approximately for 20% of milk content, predominantly contain beta-lactoglobulin and alpha-lactalbumin, while also including albumins, immunoglobulins A, G and M, Proteose-Peptones, lactoferrin and transferrin. Milk has important nutritive value, as it is a source of varying amounts of all the 9 amino acids not synthesized by the human body (5-7).
Various types of milk (non-pasteurized, pasteurized, UHT, micro-filtered, condensed, thickened, lactose-free milk) are commercially available, as well as milk with different amounts of fat, and the so-called flavoured milks (milk with added aromas, dyes, and sugars), dairy products, such as yoghurts (drinking, natural, fruit, cream, breakfast varieties), kefirs (kephir), buttermilk, fermented (cultured) milk, fortified milk (with the addition of calcium, Omega-3 acids, probiotics, prebiotic fiber), milkshake-like drinks (e.g. chocolate or fruit milkshakes), and a plethora of various cheese varieties.
Fermentation of milk results in the production of lactic acid, associated with pH decrease thus inhibiting the growth of multiple pathogens in the oral cavity. Fermented milk products include yoghurt (produced by adding Lactobacillus delbrueckii ssp. Bulgaricus and Streptococcus salivarius ssp. thermophilus bacteria to milk), kefir (based on a unique microorganism culture known as kefir grains), fermented milk (produced as a result of the fermentation of fresh milk bacteria, and also known as fermented or sour milk) and buttermilk (produced by skimming churned cream, and containing lactic acid). Cheeses come in a plethora of varieties, classified according to the method of their production and maturation into the following types: rennet-based (soft, such as brie, gorgonzola, Polish sheep “bryndza” cheese, semihards, e.g. Tilsiter cheese, and hards, e.g. Gouda cheese), high-acid (non-maturing – cottage cheese, and maturing – gomolka), those combining a high-acid and rennet-based formula (white cheese), and whey-based (ricotta) (5).
Milk components that affect the caries process
For over 60 years, the effect of milk and dairy products on the development of caries has been analysed, both in clinical trials and empirical studies. Apart from a number of essentially cariostatic components such as calcium, phosphates, casein, and lipids, milk and its derivatives contain numerous bioactive ingredients which may also play some role in inhibiting and preventing tooth decay. Table 1 lists bioactive proteins present in milk. For instance, lactoperoxidase and lysozyme inhibit glucose metabolism of Streptococcus mutans, whereas lactoferrin reduces the adherence of these organisms to saliva-covered hydroxyapatite (HA), and Proteose-Peptone components 3 and 5 (PP3 and PP5) have been found to reduce demineralization of HA under in vitro conditions (8).
Tab. 1. Bioactive proteins in bovine milk, according to van Loveren et al. (8)
Protective proteinsimmunoglobulins
Growth factorsepidermal growth factor (EGF)
tissue growth factor β (TGF-β)
insulin-like growth factor 1 (IGF-1)
xanthine oxidase
glucose oxidase
Hormonesthyrotropin-releasing hormone (THR)
thyroid-stimulating hormone (TSH)
luteinizing hormone (LH)
gastrin-releasing peptide (GRP)
adrenocorticotropic hormone (ACTH)

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Wang X, Lussi A: Introduction: functional foods and oral health. Eur J Nutr 2012; 51 (suppl. 2): S13-S14.
2. Serafini M, Stanzione A, Foddai S: Functional foods: traditional use and European legislation. Int J Food Sci Nutr 2012; 63 (suppl. 1): 7-9.
3. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA): Scientific Opinion on the substantiation of a health claim related to sugar free chewing gum and reduction of tooth demineralisation which reduces the risk of dental caries pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 2010; 8(10): 1775; http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2010.1775/pdf.
4. Światkowska M: Mleko – podstawa diety i gospodarki żywnościowej. Biuletyn Informacyjny Agencji Rynku Rolnego 2014; 3: 2-11.
5. Miller GD, Jarvis JK, McBean LD: Handbook of Dairy Foods and Nutrition. National Dairy Council. 3rd ed. Taylor & Francis Group, LLC 2007.
6. Rugg-Gunn A, Woodward M: Milk and oral health; http://www.borrowfoundation.org/assets/uploads/milk-and-oral-health.pdf.
7. Levine RS: Milk, flavoured milk products and caries. Br Dent J 2001; 191: 20.
8. van Loveren C, Broukal Z, Oganessisn E: Functional foods/ingridients and dental caries. Eur J Nutr 2012; 51 (suppl. 2): S15-S25.
9. Sugar and health. Parliamentary Office of Science and Technology Briefing Note: 1992, 31; http://researchbriefings.files.parliament.uk/documents/POST-PN-31/POST-PN-31.pdf.
10. Bowen WH, Pearson SK: Effect of milk on cariogenesis. Caries Res 1993; 27: 461-466.
11. Bowen WH, Pearson SK, van Wuyckhuyse BC, Tabak LA: Influence of milk, lactose-reduced milk, and lactose on caries in desalivated rats. Caries Res 1991; 25: 283-286.
12. Al-Jobair A, Khounganian R: Evaluating the cariogenic potential of flavored milk: an experimental study using rat model. J Contemp Dent Pract 2015; 16: 42-47.
13. Grenby TH, Andrews AT, Mistry M, Williams RJ: Dental caries-protective agents in milk and milk products: investigations in vitro. J Dent 2001; 29: 83-92.
14. Malkoski M, Dashper SG, O’Brien-Simpson NM et al.: Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob Agents Chemother 2001; 45: 2309-2315.
15. Neeser JR, Golliard M, Woltz A et al.: In vitro modulation of oral bacterial adhesion to saliva-coated hydroxyapatite beads by milk casein derivatives. Oral Microbiol Immunol 1994; 9: 193-201.
16. Vacca-Smith AM, Bowen WH: The effect of milk and kappa casein on streptococcal glucosyltransferase. Caries Res 1995; 29: 498-506.
17. Johansson I: Milk and diary products: possible effects on dental health. Scan J Nutr 2001; 46: 119-122.
18. Vacca Smith AM, Bowen WH: The effects of milk and kappa-casein on salivary pellicle formed on hydroxyapatite discs in situ. Caries Res 2000; 34: 88-93.
19. Reema SD, Lahiri PK, Roy SS: Review of casein phosphopeptides-amorphous calcium phosphate. Chin J Dent Res 2014; 17: 7-14.
20. Muñoz-Sandoval C, Muñoz-Cifuentes MJ, Giacaman RA et al.: Effect of bovine milk on Streptococcus mutans biofilm cariogenic properties and enamel and dentin demineralization. Pediatr Dent 2012; 34: e197-201.
21. Petti S, Tarsitani G, D’Arca AS: A randomized clinical trial of the effect of yoghurt on the human salivary microflora. Arch Oral Biol 2001; 46: 705-712.
22. Birkhed D, Imfeld T, Edwardsson S: pH changes in human dental plaque from lactose and milk before and after adaptation. Caries Res 1993; 27: 43-50.
23. Jensen ME, Wefel JS: Effects of processed cheese on human plaque pH and demineralization and remineralization. Am J Dent 1990; 3: 217-223.
24. Grenby TH, Andrews AT, Mistry M, Williams RJ: Dental caries-protective agents in milk and milk products: investigations in vitro. J Dent 2001; 29: 83-92.
25. Ravishankar TL, Yadav V, Tangade PS et al.: Effect of consuming different dairy products on calcium, phosphorus and pH levels of human dental plaque: a comparative study. Eur Arch Paediatr Dent 2012; 13: 144-148.
26. Hegde AM, Naik N, Kumari S: Comparison of salivary calcium, phosphate and alkaline phosphatase levels in children with early childhood caries after administration of milk, cheese and GC tooth mousse: an in vivo study. J Clin Pediatr Dent 2014; 38: 318-325.
27. Gedalia I, Ionat-Bendat D, Ben-Mosheh S, Shapira L: Tooth enamel softening with a cola type drink and rehardening with hard cheese or stimulated saliva in situ. J Oral Rehabil 1991; 18: 501-506.
28. Giacaman RA, Muñoz-Sandoval C: Cariogenicity of different commercially available bovine milk types in a biofilm caries model. Pediatr Dent 2014; 36: 1E-6E.
29. Petti S, Simonetti R, Simonetti D’Arca A: The effect of milk and sucrose consumption on caries in 6-to-11-year-old Italian schoolchildren. Eur J Epidemiol 1997; 13: 659-664.
30. Petridou E, Athanassouli T, Panagopoulos H, Revinthi K: Sociodemographic and dietary factors in relation to dental health among Greek adolescents. Community Dent Oral Epidemiol 1996; 24: 307-311.
31. Papas AS, Joshi A, Belanger AJ et al.: Dietary models for root caries. Am J Clin Nutr 1995; 61: 417S-422S.
32. Tanaka K, Miyake Y, Sasaki S: Intake of dairy products and the prevalence of dental caries in young children. J Dent 2010; 38: 579-583.
33. Dawani N, Nisar N, Khan N et al.: Prevalence and factors related to dental caries among pre-school children of Saddar town, Karachi, Pakistan: a cross-sectional study. BMC Oral Health 2012; 12: 59.
34. Thomson ME, Dever JG, Pearce EI: Intra-oral testing of flavoured sweetened milk. N Z Dent J 1984; 80: 44-46.
otrzymano: 2017-02-09
zaakceptowano do druku: 2017-02-28

Adres do korespondencji:
*Urszula Kaczmarek
Katedra i Zakład Stomatologii Zachowawczej i Dziecięcej Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
ul. Krakowska 26, 50-425 Wrocław
tel. +48 (71) 784-03-61

Nowa Stomatologia 1/2017
Strona internetowa czasopisma Nowa Stomatologia