Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Nowa Stomatologia 4/2021, s. 119-128 | DOI: 10.25121/NS.2021.26.4.119
Paula Piekoszewska-Ziętek, *Dorota Olczak-Kowalczyk
Salivary carbonic anhydrase VI concentration and the state of the oral cavity
Stężenie anhydrazy węglanowej VI w ślinie a stan zdrowia jamy ustnej
Department of Pediatric Dentistry, Medical University of Warsaw, Poland
Head of Department: Professor Dorota Olczak-Kowalczyk, MD, PhD
Wstęp. Anhydrazy węglanowe to enzymy, które uczestniczą w regulacji pH oraz równowagi jonowej i kwasowo-zasadowej w różnych tkankach organizmu. Anhydraza węglanowa VI jest wydzielana przez ślinianki przyuszne i podżuchwowe. Może wpływać na właściwości śliny, takie jak regulacja pH i buforowość, choć jej rola nie jest wciąż do końca poznana.
Cel pracy. Określenie związku stężenia ślinowego anhydrazy węglanowej VI z różnymi stanami w jamie ustnej (próchnica zębów, stan higieny i dziąseł) oraz właściwościami fizykochemicznymi śliny i mianem bakterii kariogennych.
Materiał i metody. Zbadano 87 pacjentów, oceniając wskaźnik PUWz oraz PUWp, liczbę aktywnych plam próchnicowych oraz stan higieny jamy ustnej oraz dziąseł. Pobrano próbki śliny do analizy właściwości fizykochemicznych, miana bakterii kariogennych oraz ślinowego stężenia anhydrazy węglanowej VI.
Wyniki. Ślinowe stężenie anhydrazy węglanowej VI wahało się od 0,165 do 8,477 μg/ml, wynosząc średnio 1,268 ± 1,493 μg/ml. Analiza statystyczna danych wykazała różnice stężenia ślinowego CA6 w zależności od obecności aktywnej próchnicy zębów, stanu higieny i dziąseł, parametrów fizykochemicznych oraz miana bakterii kariogennych.
Wnioski. Ślinowe stężenie anhydrazy węglanowej VI różni się w zależności od stanu w jamie ustnej. U pacjentów z aktywną próchnicą zębów stężenie jest niższe.
Introduction. Carbonic anhydrases are enzymes that participate in the regulation of pH and the ionic and acid-base balance in various tissues of the body. Carbonic anhydrase VI is secreted by the parotid and submandibular glands. It can affect salivary properties, such as pH regulation and buffering, although its role is still not fully understood.
Aim. To determine the relationship between the concentration of salivary carbonic anhydrase VI and various conditions in the oral cavity (dental caries, hygiene and gingiva), the physicochemical properties of saliva and cariogenic bacteria count.
Material and methods. 87 patients were examined, assessing DMFT and DMFT index, the number of active white spot lesions, hygiene level and state of gingiva. Saliva samples were collected for the analysis of physicochemical properties, level of cariogenic bacteria and salivary concentration of carbonic anhydrase VI.
Results. Salivary carbonic anhydrase VI concentration ranged from 0.165 to 8.477 μg/ml, average 1.268 ± 1.493 μg/ml. Statistical analysis of the data showed differences in the concentration of salivary CA6 depending on the presence of active tooth decay, hygiene and gingival conditions, physicochemical parameters and the level of cariogenic bacteria.
Conclusions. Salivary carbonic anhydrase VI concentration differs depending on the condition in the oral cavity. In patients with active tooth decay, the concentration is lower.

The oral cavity constitutes a unique environment in which the saliva and mucosa play a key role. The properties and components of saliva are important for maintaining oral health and protecting teeth. Saliva analysis is non-invasive and has a great potential for clinical use. It can be used to detect biomarkers of disease states in the oral cavity, but also in systemic diseases (1, 2). Carbonic anhydrases are a group of metalloenzymes, with a zinc atom as the active center, which are responsible for catalyzing the reversible reaction of carbon dioxide hydration (CO2 + H2O ? HCO3- + H+). According to Lindskog and Nyman (3), 16 different carbonic anhydrases occurring in mammals are currently known, differing in terms of enzymatic properties, place of expression and amino-acid sequence (4). Anhydrases are involved in the regulation of pH and the ionic and acid-base balance in various tissues of the body. The only secreted form is carbonic anhydrase VI (CA6), secreted mainly by the parotid and submandibular glands (5). CA6 is a salivary enzyme and may influence its properties such as pH regulation and buffering capacity, although its role is still not fully understood. A study by Kivela et al. (6) challenged the association of pH regulation and buffering capacity with high levels of CA6 in saliva. On the other hand, Kimoto et al. (7) demonstrated the ability of anhydrase to penetrate dental plaque and neutralize acids through bicarbonate buffers. Dušan et al. (8) suggests the usefulness of CA6 activity in saliva as a biomarker of caries disease. However, further research is required to confirm these reports.
The aim of the following study was to determine the relationship between the concentration of salivary carbonic anhydrase VI and various conditions in the oral cavity (tooth decay, hygiene status and gingivitis), physicochemical properties of saliva and the cariogenic bacteria count.
Material and methods
The study conformed to the STROBE guidelines (STrengthening the Reporting of OBservational studies in Epidemiology). The approval of the Bioetical Comission of Warsaw Medical University (No. KB/194/2015) was obtained.
Study population
Eighty-seven patients aged 12-16 years with permanent dentition took part in the investigation. The participants were recruited from Department of Pediatric Dentistry, Medical University of Warsaw. The inclusion criteria included no systemic diseases, no chronic medication intake, no developmental defects of tooth hard tissues. Patients representing those features were eliminated from the study.
Clinical examination
Patients were examined in a dental office on the basis of standardized WHO criteria (9), by one researcher. The presence of dental caries was assessed as DMFT/DMFT index and the presence of white spot lesions (WSL) was evaluated. The assessment of the hygiene status was based on the ODI-S soft deposit index (component of the OHI-S index according to Greene and Vermillion) (10) and the approximate plaque index (API%) according to Lange (11). The gingival condition was determined on four surfaces of permanent teeth 16, 12, 24, 36, 32, 44 using the GI (Gingigal Index) according to Löe (12).
Collection of saliva samples for analysis
Saliva samples were collected from all participants in the morning (8.00-10.00), on an empty stomach, using commercial Salivette kits (Sarstedt, Nümbrecht, Germany). The swabs were inserted into the mouth and left there for 5 minutes, allowing the accumulating saliva to soak in. After collection, the samples were immediately placed in a refrigerator at + 4°C and centrifuged within 2 hours after collection. Centrifugation was performed according to the parameters indicated by the manufacturer (1000 x g, at a temperature of + 4°C, for 15 min). The unstimulated saliva flow was calculated by dividing the volume of saliva obtained from the patient after centrifugation by the sampling time. Then the samples were frozen at -80°C until further analysis.
The commercial GC Saliva Check Buffer (GC Europe) kit was used to assess the physicochemical properties of saliva (pH, buffer capacity, stimulated saliva flow, consistency), according to the manufacturer’s instructions. Salivary levels of cariogenic bacteria – Streptococcus mutans (SM) and Lactobacillus spp. (LB) were assessed with the commercial CRT Bacteria test (Ivoclar Vivadent), according to the instructions. Values were expressed as colony forming units per milliliter of saliva (CFU/ml).
Assessment of salivary carbonic anhydrase VI concentration
Prior to testing, the samples were brought to room temperature. Freeze/thaw cycles were avoided. Laboratory testing was performed according to the protocol outlined in the ELISA kit for Carbonic Anhydrase VI (Cloud-Cone Corp.) and read at 450 nm on a BioTek Synergy™ Mx microplate reader (BioSPX B.V.).
Statistical analysis
The analysis was carried out with the use of the Statistica 12.0 program and the R package. Descriptive statistics characterizing their variability were calculated for quantitative variables. Proportions (%) with division into groups were calculated for binomial variables. The comparison of quantitative variables between the two groups was performed using the Mann-Whitney test and the chi-square test, while the comparison of three or more groups was performed using the ANOVA test. In the case of categorical variables (including binomial variables), the chi-square test was used to compare the groups. Spearman’s rank correlation coefficient was calculated. In all analyzes, the level of statistical significance was set at 0.05. Missing data was excluded from the analysis.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Szydlarska D, Grzesiuk W, Kupstas A, Bar-Andziak E: Ślina jako materiał diagnostyczny. Forum Medycyny Rodzinnej 2008; 2(6): 454-464.
2. Makawi Y, El?Masry E, El?Din HM: Salivary carbonic anhydrase, pH and phosphate buffer concentrations as potential biomarkers of caries risk in children. Journal of Unexplored Medical Data 2017; 2: 9-15.
3. Lindskog S, Nyman PO: Metal-binding properties of human erythrocyte carbonic anhydrases. Biochim Biophys Acta 1964; 85: 462-474.
4. Imtaiyaz Hassan M, Shajee B, Waheed A et al.: Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 2013; 21(6): 1570-1582.
5. Parkkila S, Kaunisto K, Rajaniemi L et al.: Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II, and I in human parotid and submandibular glands. J Histochem Cytochem 1990; 38(7): 941-947.
6. Kivela J, Parkkila S, Metteri J et al.: Salivary carbonic anhydrase VI concentration and its relation to basic characteristics of saliva in young men. Acta Physiol Scand 1997; 161: 221-225.
7. Kimoto M, Kishino M, Yura Y, Ogawa Y: A role of salivary carbonic anhydrase VI in dental plaque. Arch Oral Biol 2006; 51: 117-122.
8. Dušan S, Ivana S, Mirjana, A, Smarija I: The role of carbon anhydrase in the occurrence of caries. Acta Stomatologica Naissi 2008; 24: 789-792.
9. WHO: Oral Health Surveys – basic methods. 5th edition. 2013: 47, 73-74.
10. Greene JC, Vermillion JR: The simplified oral hygiene index. J Am Dent Assoc 1964; 68: 7-13.
11. Lange DE, Plagmann HC, Eenboom A, Promsberger A: Klinische Bewertungsverfahren zur Objektivierung der Mundhygiene. Dtsch Zahnärztl Z 1977; 32: 44-47.
12. Löe H: The gingival index, the plaque index and the retention index systems. J Periodontol 1967; 38(suppl.): 610.
13. Diaz-Nicolas J, Silva-Vetri MG, Rivas-Tumanyan S et al.: Prevalence of Dental Caries in 12-Year-Olds in San Pedro de Macorís, DR. P R Health Sci J 2020; 39(2): 210-215.
14. Onov MP, Beltcheva AB: Caries Prevalence in 12-year-old Children from Plovdiv – a Multifactorial Regression Analysis. Folia Med (Plovdiv) 2020; 62(1): 159-164.
15. AlGhamdi AS, Almarghlani AA, Alyafi RA et al.: Gingival health and oral hygiene practices among high school children in Saudi Arabia. Ann Saudi Med 2020; 40(2): 126-135.
16. Lock NC, Susin C, Damè-Teixeira N et al.: Sex differences in the association between obesity and gingivitis among 12-year-old South Brazilian schoolchildren. J Periodontal Res 2020; 55(4): 559-566.
17. Kazeminia M, Abdi A, Shohaimi S et al.: Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: a systematic review and meta-analysis. Head Face Med 2020; 16(1): 22.
18. Surdilović D, Stojanović I, Apostolović M: Caries risk estimation in children regarding values of saliva buffer system components and carbon hydrase activity. Vojnosanit Pregl 2008; 65: 676-680.
19. Frasseto F, Parisotto TM, Peres RC et al.: Relationship among salivary carbonic anhydrase VI activity and flow rate, biofilm pH and caries in primary dentition. Caries Res 2012; 46(3): 194-200.
20. de Sousa ET, Lima-Holanda AT, Nobre-Dos-Santos M: Carbonic anhydrase VI activity in saliva and biofilm can predict early childhood caries: A preliminary study. Int J Paediatr Dent 2021; 31(3): 361-371.
21. de Sousa ET, Lima-Holanda AT, Sales LS, Nobre-Dos-Santos M: Combined effect of starch and sucrose on carbonic anhydrase VI activity in saliva and biofilm of children with early childhood caries. Exposure to starch and sucrose alters carbonic anhydrase VI activity in saliva and biofilm. Clin Oral Investig 2021; 25(5): 2555-2568.
22. Leinonen J, Kivelä J, Parkkila S et al.: Salivary carbonic anhydrase isoenzyme VI is located in the human enamel pellicle. Caries Res 1999; 33: 185-190.
otrzymano: 2021-11-03
zaakceptowano do druku: 2021-11-24

Adres do korespondencji:
*Dorota Olczak-Kowalczyk
Zakład Stomatologii Dziecięcej Warszawski Uniwersytet Medyczny
ul. Binieckiego 6, 02-097 Warszawa
tel.: +48 (22) 116-64-24

Nowa Stomatologia 4/2021
Strona internetowa czasopisma Nowa Stomatologia