Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Zastanawiasz się, jak wydać pracę doktorską, habilitacyjną lub monografię? Chcesz dokonać zmian w stylistyce i interpunkcji tekstu naukowego? Nic prostszego! Zaufaj Wydawnictwu Borgis – wydawcy renomowanych książek i czasopism medycznych. Zapewniamy przede wszystkim profesjonalne wsparcie w przygotowaniu pracy, opracowanie dokumentacji oraz druk pracy doktorskiej, magisterskiej, habilitacyjnej. Dzięki nam nie będziesz musiał zajmować się projektowaniem okładki oraz typografią książki.

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Nauk Medycznych 1/2002, s. 6-8
Tomasz Pasierski
Patogeneza miażdżycy i występowania zdarzeń wieńcowych
Pathogenesis of atheroscrelosis and coronary events
Klinika Choroby Wieńcowej Instytutu Kardiologii w Warszawie
Kierownik Kliniki: prof. dr hab. med. Hanna Szwed
Streszczenie
Miażdżyca to przewlekły proces zapalny toczący się w błonie wewnętrznej tętnic dużego i średniego kalibru. Najważniejszym czynnikiem odpowiedzialnym za powstawanie i rozwój zmian miażdżycowych jest cholesterol, który dostarczany jest do tkanek za pośrednictwem lipoproteiny LDL. Przyjęty podział zmian miażdżycowych wyróżnia zmiany wczesne (typ I - III), które mogą być odwracalne oraz zmiany późne (typ IV - VI), które są przyczyną objawów klinicznych. Ostre zespoły wieńcowe (zawał serca i niestabilna choroba wieńcowa) są wywołane nadżerką błony wewnętrznej okrywającej blaszkę miażdżycową lub pęknięciem jej otoczki łącznotkankowej.
Summary
Atherosclerosis is the chronic inflammatory process, that involves intimal layer of large and medium sized arteries. Most important casual factor of development of atherosclerosis is cholesterol, transported in the low density lipoproteins (LDL). Modified LDL impairs endothelial function and initiates inflammatory reaction within vessel wall. American Heart Association proposed the macroscopic classification of atherosclerosis. Type I – III describes early changes that may be reversible. Complex atherosclerotic plaques (type IV – VI) are characterized by lipid core and fibrous cap. Acute coronary syndromes are caused by coronary artery thrombosis that develops on ruptured or eroded plaque.
Miażdżyca jest chorobą tętnic, której powikłania (zawał serca i udar mózgowy) stanowią najczęstszą przyczynę zgonów w krajach rozwiniętych. Ściana tętnicy zbudowana jest z trzech warstw. Warstwę wewnętrzną (intima) tworzą komórki śródbłonka naczyniowego, spoczywające na utworzonej z kolagenu i proteoglikanów błonie podstawnej. W warunkach prawidłowych w śródbłonku naczyniowym syntetyzowane są związki działające naczyniorozszerzająco, antyadhezyjnie i antyproliferacyjnie (tlenek azortu – NO), przeciwzakrzepowo (prostacyklina i trombomodulina) i fibrynolitycznie (tkankowy aktywator plazminogenu). Warstwę środkową (media) ściany tętnicy wypełniają gęsto komórki mięśni gładkich. W dużych tętnicach warstwa ta jest wzmocniona przez włókna sprężyste. Błona zewnętrzna (adventitia) utworzona jest przez luźną tkankę łączną.
Miażdżyca stanowi przewlekły, toczący się w błonie wewnętrznej tętnic proces zapalny (4, 6, 11). Zasadniczą rolę w jej powstaniu wywołują czynniki działające uszkadzająco na śródbłonek naczyniowy, głównie cholesterol, nadciśnienie tętnicze, palenie papierosów i cukrzyca (13, 15). Na rolę zaburzeń czynności śródbłonka w procesie miażdżycowym wskazuje lokalizacja zmian miażdżycowych w rozwidleniach i miejscach odejścia tętnic, czyli w miejscach gdzie czynność śródbłonka jest uszkodzona w wyniku turbulentnego przepływu i zwiększonego gradientu naprężenia ścinającego (7). Znaczenie dużego stężenia cholesterolu w rozwoju miażdżycy zostało potwierdzone w dużych badaniach epidemiologicznych (8). Bardzo wysokie stężenia cholesterolu w surowicy są niezbędne do eksperymentalnego wywołania miażdżycy. W surowicy cholesterol znajduje się w kompleksie z białkami zwanymi apolipoproteinami. Główną rolę w rozwoju miażdzycy odgrywają lipoproteiny niskiej gęstości (LDL), w których obecna jest apolipoproteina B. W miejscu uszkodzenia śródbłonka zwiększa się jego zarówno przepuszczalność dla lipoproteiny LDL, jak też jej retencja w błonie wewnętrznej (5, 6).
Kluczowe znaczenie dla rozwoju miażdżycy ma proces modyfikacji białkowych i lipidowych składników lipoproteiny LDL, polegający głównie na ich utlenianiu, lecz również na trawieniu przez enzymy proteolityczne i glikolizacji (10, 14). W pierwszym etapie, modyfikacji ulegają głównie lipidowe składniki lipoproteiny LDL, a powstałe minimalnie zmodyfikowane LDL (mm LDL) nadal są rozpoznawane przez komórkowy receptor apo B/E i uczestniczą w fizjologicznym obiegu cholesterolu. Minimalnie zmodyfikowane lipoproteiny LDL są jednak silniej wiązane przez proteoglikany błony wewnętrznej (5). W tej sytuacji są one odizolowane od znajdujących się we krwi antyoksydantów, co nasila ich dalszą modyfikację. Zmodyfikowane lipoproteiny wywołują również reakcję zapalną w błonie wewnętrznej. W takiej sytuacji dochodzi do ekspresji na powierzchni śródbłonka molekuł adhezyjnych (selektyny P i E, ICAM-1, VCAM-1). Zatrzymują one na wewnętrznej powierzchni naczynia przepływające leukocyty, a następnie ułatwiają ich przenikanie do błony wewnętrznej. Zaktywowane komórki śródbłonka syntetyzują takie związki, jak białko chemotaksji monocytów (MCP 1) oraz czynnik aktywacji kolonii makrofagów (MCSF), które powodują akumulację monocytów w błonie wewnętrznej. Same zmodyfikowane lipoproteiny również stanowią sygnał chemotaktyczny dla monocytów. W błonie wewnętrznej monocyty ulegają przekształceniu w makrofagi, co wiąże się z pojawieniem się na ich błonie komórkowej receptorów zmiatających (scavenger receptor).
Dalszy etap modyfikacji lipoprotein LDL obejmuje również ich składniki białkowe. W wyniku zaawansowanej modyfikacji lipoproteiny LDL (m LDL) przestają być rozpoznawane przez fizjologiczny receptor apo B/E, natomiast są wiązane przez receptor zmiatający. Umożliwia to makrofagom ich wchłanianie, co w początkowym okresie jest zjawiskiem korzystnym, gdyż ogranicza szkodliwy wpływ m LDL na komórki śródbłonka i mięśni gładkich. W odróżnieniu od fizjologicznego receptora apo B/E, którego aktywność maleje wraz ze wzrostem stężenia cholesterolu w komórce, ekspresja receptora zmiatającego nie podlega temu procesowi. Nieograniczona absorbcja cholesterolu przez makrofag prowadzi do powstawania w jego obrębie skupisk cholesterolu. Przyjmuje on wtedy postać komórki piankowatej. Komórki piankowate mogą powstawać również z miocytów i fibroblastów. W wyniku nagromadzenia się cholesterolu w komórkach piankowatych dochodzi do ich rozpadu i tworzenia się pozakomórkowych złogów cholesterolu.
Makrofagi stymulują proces miażdżycowy na każdym jego etapie. Są one stałym źródłem licznych chemokin, cytokin, czynników wzrostowych i enzymów proteolitycznych. Aktywność takich czynników, jak białko chemotaksji monocytów (MCP 1) oraz czynnik aktywacji kolonii makrofagów (MCSF) zapewnia ciągły napływ nowych monocytów do zmiany miażdżycowej. Makrofagi aktywują również limfocyty T, w czym pośredniczy głównie interleukina 2. Generowane przez makrofagi czynniki wzrostowe, takie jak płytkowy czynnik wzrostu (PDGF) czy insulinopodobny czynnik wzrostu (ILGF 1) pobudzają komórki mięśni gładkich, które z błony środkowej migrują do błony wewnętrznej. Tu komórki mięśni gładkich dzielą się, a część z nich przekształca się w sposób umożliwiający syntezę kolagenu oraz proteoglikanów (fenotyp sekrecyjny). Proliferację mięśni gładkich stymuluje również bezpośrednio zmodyfikowana LDL. W wyniku proliferacji komórek mięśni gładkich i syntezy zrębu pozakomórkowego objętość blaszki miażdżycowej wzrasta.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 30 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

Piśmiennictwo
1. Arbustini E. et al.: Heart 1999, 82:269-272.
2. Davies M.J.: Dialogues in Cardiovascular Med. 1999, 4:115-130.
3. Drake T.A. et al.: Am. J. Pathol. 1991, 138:601-607.
4. Fuster V.: Atherosclerosis –thrombosis and vascular biology w ks. Cecil Textbook of medicine red Goldman L, Bennett JC wydanie 21. WB Saunders Filadelfia 2000:291-296.
5. Jon K., Tabas I.: The response-to-retention hypothesis of early atherogenesis Atheroscler. Thromb. Vasc. Biol. 1995,15:551-561.
6. Lusis A.J.: Atherosclerosis Nature 2000, 407:233-241.
7. Malek A.M. et al.: JAMA 1999, 282:2035-2042.
8. Martin M.J. et al.: Lancet 1986, 2:933-936.
9. McGill H.C. et al.: Circulation 2000, 102:374-379.
10. Navab M. et al.: Atheroscler. Thromb. Vasc. Biol. 1996, 16:831-842.
11. Ross R.: N. Engl. J. Med. 1998, 340:115-126.
12. Stary H.C. et al.: American Heart Association Circulation 1995, 92:1355-1374.
13. Strong J.P. et al.: JAMA 1999, 281:727-735.
14. Torzewski M. et al.: Arterioscler. Thromb. Vasc. Biol. 1998, 18:369-378.
15. Vergnani L. et al.: Circulation 2000, 101:1261-1266.
16. Ward M.R. et al.: Circulation 2000, 102:1186-1191.
Postępy Nauk Medycznych 1/2002
Strona internetowa czasopisma Postępy Nauk Medycznych