Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - New Medicine 4/2019, s. 135-144 | DOI: 10.25121/NewMed.2019.23.4.135
*Angelika Kobylińska, Dorota Olczak-Kowalczyk
The relationship between maternal nutrition in pregnancy and early childhood caries – a systematic literature review
Związek między odżywianiem w ciąży a próchnicą wczesnego okresu dzieciństwa ? systematyczny przegląd literatury
Department of Paediatric Dentistry, Medical University of Warsaw, Poland
Head of Department: Professor Dorota Olczak-Kowalczyk, MD, PhD
Streszczenie
Wstęp. Proces rozwoju zębów mlecznych podlega wpływom środowiska wewnątrzmacicznego i jest kształtowany przez czynniki, takie jak odżywianie matki w okresie prenatalnym. Z kolei od prawidłowego rozwoju uzębienia mlecznego, tworzenia i mineralizacji szkliwa i zębiny zależy podatność na czynniki próchnicotwórcze. Obecny stan wiedzy dotyczącej wpływu odżywiania i suplementacji w ciąży na ryzyko wystąpienia próchnicy wczesnego okresu dzieciństwa (ang. early childhood caries ? ECC) pozostaje niejasny.
Cel pracy. Ocena związku między odżywianiem w ciąży a ryzykiem wystąpienia próchnicy wczesnego okresu dzieciństwa.
Materiał i metody. Przeprowadzono systematyczny przegląd literatury dotyczącej związku między odżywianiem w czasie ciąży a próchnicą wczesnego okresu dzieciństwa w oparciu zarówno o elektroniczne, jak i manualne przeszukiwanie medycznych baz danych, takich jak: PubMed, EMBASE i MEDLINE, co pozwoliło zidentyfikować 6 badań spełniających kryteria włączenia. Do oceny ryzyka wystąpienia błędów systematycznych wykorzystano kwestionariusz ROBINS-I, natomiast do oceny jakości prac oryginalnych wykorzystano skalę Newcastle-Ottawa (Newcastle-Ottawa Scale ? NOS).
Wyniki. Wszystkie analizowane prace były obarczone ryzykiem błędu wynikającym z obecności czynników zakłócających, wpływających na interwencję i interpretację wyników. Jakość czterech badań oceniono jako dobrą (NOS > 6), natomiast dwóch pozostałych jako średnią.
Wnioski. Zwiększone spożycie witaminy D, wapnia, produktów mlecznych, jogurtów i serów przez kobietę w trakcie ciąży stanowi istotny czynnik obniżający ryzyko wystąpienia próchnicy u dziecka. Niedobór witaminy D, niskie spożycie wapnia oraz dieta bogata w kwasy tłuszczowe i węglowodany zwiększają ryzyko wystąpienia próchnicy wczesnego okresu dzieciństwa.
Summary
Introduction. Odontogenesis of deciduous teeth is dependent on the intrauterine environment and shaped, among other things, by prenatal maternal nutrition. Proper deve-lopment of deciduous dentition, formation and mineralisation of the enamel and dentin determines the susceptibility to cariogenic factors. The current knowledge of the effects of prenatal nutrition and supplementation on the risk of early childhood caries (ECC) is unclear.
Aim. An evaluation of the relationship between maternal nutrition in pregnancy and the risk of early childhood caries (ECC).
Material and methods. A systematic review of literature on the association between prenatal maternal nutrition and early childhood caries was performed based on both electronic and manual search through medical databases, i.e. PubMed, EMBASE and MEDLINE, which allowed to identify 6 studies meeting the inclusion criteria. The risk of bias was evaluated using the ROBINS-I questionnaire and a quality assessment of original papers was performed using the Newcastle-Ottawa Scale (NOS).
Results. All analysed works were at a risk of bias associated with confounders affecting the intervention and interpretation of results. Four works were considered to be of good quality (NOS > 6) and two other of medium quality.
Conclusions. An increased maternal intake of vitamin D, calcium, dairy products, yoghurts and cheeses in pregnancy is an important factor reducing the risk of dental caries in their children. The risk of ECC is increased in the case of vitamin D deficiency, low intake of calcium and a diet high in fatty acids and carbohydrates.
Introduction
Deciduous odontogenesis begins already during foetal life. Once the deciduous crowns are fully developed in the first year of life and the mineralisation process is completed at the time of tooth eruption, the enamel shows structural stability and is not subject to metabolic processes. Therefore, the intrauterine environment, which is shaped, among other things, by prenatal maternal nutrition, is a key factor determining proper development of deciduous dentition, formation and mineralisation of the enamel and dentin, and thus susceptibility to cariogenic factors (1). The current knowledge of the effects of prenatal nutrition and supplementation on the risk of early childhood caries (ECC) is unknown. Low vitamin D levels in pregnancy were considered to be associated with reduced foetal weight (< 10 percentile), preterm birth, adverse effects on the development of the child’s skeletal system and dental tissues as well as an increased risk of infectious diseases (2). Maternal hypovitaminosis (25(OH)D < 20 ng/mL or < 50 nmol/L) is an important risk factor for abnormalities in the newborn. The levels of 1,25-dihydroxyvitamin D (1,25[OH]2D) increase in early pregnancy and are doubled in the third trimester to cover the calcium needs of the foetus during skeletal development. Karras et al. suggest that this is also associated with the physiological adaptation of the immune system to maintain the pregnancy (3). Vitamin D supplementation in pregnancy increases both umbilical cord and neonatal blood levels of this vitamin (4, 5). However, Galthen-Sørensen et al. found no evidence to support the relationship between maternal 25(OH)D levels and skeletal development in the child based on a systematic literature review (5 observational studies) (6).
The literature describes a relationship between A- and D-hypovitaminosis and an increased risk of mineralisation disorders and enamel hypoplasia in a child, which are the risk factors for ECC (7-9). Low maternal dietary intake of calcium is considered to be associated with the so-called foetal programming in terms of, among other things, hypertension, altered lipid profile, obesity and insulin resistance (10-14). High maternal levels of carbohydrates, free fatty acids and amino acids may lead to a permanent change in appetite control, neuroendocrine function and impaired energy metabolism (developmental overnutrition hypothesis) in the foetus, leading to obesity in later life (15). The lack of appetite control in a child may promote the development of improper eating habits, such as increased frequency of meals. Furthermore, mothers who consume large amounts of carbohydrates are more likely to offer diet high in sugars to their children (16). The PICO (Patients Intervention Comparison Outcome) question was as follows: does high dietary intake of protein and calcium and low dietary intake of sugars or prenatal vitamin supplementation affect the risk of dental caries in children aged up to 71 months compared to low protein/calcium intake and high sugar intake or the lack of supplementation?
Aim
The aim of the study was to evaluate the relationship between nutrition and vitamin supplementation in pregnancy and early childhood caries basing on a systematic review of literature.
Material and methods
Search strategy
Medical databases, i.e. PubMed, MEDLINE and EMBASE, were searched through for prenatal nutrition and supplementation as an exposure (I), using the following key terms: “prenatal vitamin” OR “dairy products” OR “protein deficiency” OR “calcium” OR “nutrition status” OR “intake of sugar” OR “sugar consumption” OR “vitamin” combined with: “prenatal*” OR “pregnancy” OR “pregnant women” OR “pregnant”, and the development of ECC as an effect (O) (searched terms: “early childhood caries” OR “dental caries”), in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol (17), which allowed to identify 5 studies meeting the inclusion criteria. A total of 6 studies were included in the review following an additional, manual search through the cited literature. The search strategy and the inclusion/exclusion criteria are presented in table 1 and figure 1.
Tab. 1. Search strategy
Search strategy for PICO:
Question: Is there a relationship between prenatal nutrition and caries in the child (PICO)
Literature search strategy
PopulationPregnant women and their children < 6 years old
Intervention/exposureVitamin supplementation; diet high in protein, calcium and low sugar intake during pregnancy
ComparisonNo vitamin supplementation, diet low in protein and calcium, high sugar intake
ResultECC in the child
Searched key terms“Prenatal vitamin” OR “dairy products” OR “protein deficiency” OR “calcium” OR “nutrition status” OR “intake of sugar” OR “sugar consumption” OR “vitamin” combined with: “prenatal” OR “pregnancy” OR “pregnant women” OR “pregnant” AND “early childhood caries” OR “dental caries”
Search through medical databases
ElectronicPubMed, MEDLINE, EMBASE
ManualCited literature
Selection criteria
Inclusion criteriaPublications after 2000, original papers, meta-analyses, systematic reviews; language: Polish, English
Exclusion criteriaIn vitro studies, case reports, animal studies
Fig. 1. Search strategy according to PRISMA (17)
The quality and risk of bias assessment
The qualified studies were assessed independently by two investigators using the The Risk Of Bias In Non-rando-mized Studies ? of Interventions (ROBINS-I) assessment tool ver. 1.08.2016 (18). Also, the quality was evaluated based on the Newcastle Ottawa Scale (19). Contentious issues were discussed. Final assessment was performed jointly by all investigators involved. Key factors potentially disturbing study results, i.e. the socioeconomic status, age, maternal education, the course of pregnancy (maternal comorbidities, preterm birth, low birth weight), the number of teeth in a child, dietary exposure to sugars, the lack of calibration of the investigators, dental assessment in daylight with no previous dental surface cleaning, the lack of radiological assessment, were identified based on the literature. Each study was briefly characterised (country, type of study, age and number of participants, definition of intervention/exposure and final result, findings, conclusions and confounders).
Results
Database search findings
The electronic search through databases and the manual search through literature allowed to identify 6 studies meeting the inclusion criteria.
Characteristics of the works

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Jontell M, Linde A: Nutritional aspects on tooth formation. World Rev Nutr Diet 1986; 48: 114-136.
2. Karras SN, Fakhoury H, Muscogiuri G et al.: Maternal vitamin D levels during pregnancy and neonatal health: evidence to date and clinical implications. Ther Adv Musculoskelet Dis 2016; 8: 124-135.
3. Karras SN, Anagnostis P, Bili E et al.: Maternal vitamin D status in pregnancy and offspring bone development: the unmet needs of vitamin D era. Osteoporos Int 2014; 25: 795-805.
4. Grant CC, Stewart AW, Scragg R et al.: Vitamin D during pregnancy and infancy and infant serum 25-hydroxyvitamin D concentration. Pediatrics 2014; 133: e143-153.
5. Sablok A, Batra A, Thariani K et al.: Supplementation of vitamin D in pregnancy and its correlation with feto-maternal outcome. Clin Endocrinol (Oxf) 2015; 83: 536-541.
6. Galthen-Sørensen M, Andersen LB, Sperling L et al.: Maternal 25-hydroxyvitamin D level and fetal bone growth assessed by ultrasound: a systematic review. Ultrasound Obstet Gynecol 2014; 44: 633-640.
7. Armstrong WD: An evaluation of the roles of vitamins and minerals in the control of caries. J Dent Res 1948; 27: 376-396.
8. Winter GB: Maternal nutritional requirements in relation to the subsequent development of teeth in children. J Hum Nutr 1976; 30: 93-99.
9. Schroth RJ, Smith PJ, Whalen JC et al.: Prevalence of caries among preschool-aged children in a northern Manitoba community. J Can Dent Assoc 2005; 71: 27.
10. Belizán JM, Villar J, Bergel E et al.: Long term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ 1997; 315: 281-285.
11. Shiell AW, Campbell DM, Hall MH et al.: Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. BJOG 2000; 107: 890-895.
12. Bergel E, Belizán JM: A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. BJOG 2002; 109: 540-545.
13. Morley R, Carlin JB, Dwyer T: Maternal calcium supplementation and cardiovascular risk factors in twin offspring. Int J Epidemiol 2004; 33: 1304-1309.
14. Zemel MB, Miller SL: Dietary calcium and dairy modulation of adiposity and obesity risk. Nutr Rev 2004; 62: 125-131.
15. Armitage JA, Poston L, Taylor PD: Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res 2008; 36: 73-84.
16. Oliveria SA, Ellison RC, Moore LL et al.: Parent-child relationships in nutrient intake: the Framingham Children’s Study. Am J Clin Nutr 1992; 56: 593-598.
17. Moher D, Liberati A, Tetzlaff J et al.; PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
18. Sterne JAC, Hernán MA, Reeves BC et al.: ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016; 355: i4919.
19. Wells GA, Shea B, O’Connell D et al.: The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses; www.ohri.ca/programs/clinical_epidemiology/oxford.asp (data dostępu: 11.10.2018).
20. Schroth RJ, Lavelle C, Tate R et al.: Prenatal vitamin D and dental caries in infants. Pediatrics 2014; 133: e1277-e1284.
21. Tanaka K, Hitsumoto S, Miyake Y et al.: Higher vitamin D intake during pregnancy is associated with reduced risk of dental caries in young Japanese children. Ann Epidemiol 2015; 25: 620-625.
22. Singleton R, Day G, Thomas T et al.: Association of Maternal Vitamin D Deficiency with Early Childhood Caries. J Dent Res 2019; 98(5): 549-555.
23. Thitasomakul S, Piwat S, Thearmontree A et al.: Risks for early childhood caries analyzed by negative binomial models. J Dent Res 2009; 88: 137-141.
24. Tanaka K, Miyake Y, Sasaki S et al.: Dairy products and calcium intake during pregnancy and dental caries in children. Nutr J 2012; 11: 33.
25. Wigen TI, Wang NJ: Maternal health and lifestyle, and caries experience in preschool children. A longitudinal study from pregnancy to age 5 yr. Eur J Oral Sci 2011; 119: 463-468.
26. Halusic AM, Sepich VR, Shirley DC et al.: Calcium and Magnesium levels in primary tooth and genetic variation in enamel formation genes. Pediatr Dent 2014; 36(5): 384-388.
27. Michałek-Pasternak E, Andrzejuk M, Boguszewska-Gutenbaum H et al.: Hipomineralizacja trzonowcowo-siekaczowa. Przegląd piśmiennictwa. Nowa Stomatol 2013; 3: 115-119.
28. Baeke F, Takiishi T, Korf H et al.: Vitamin D: modulator of the immune system. Curr Opin Pharmacol 2010; 10(4): 482-496.
29. Hewison M: An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 2012; 76(3): 315-325.
30. Garg N, Jain AK, Saha S et al.: Essentiality of early diagnosis of molar incisor hypomineralization in children and review of its clinical presentation, etiology and management. Int J Clin Ped Dent 2012; 5(3): 190-196.
31. Li Y, Caufield PW: The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J Dent Res 1995; 74(2): 681-685.
32. Berkowitz RJ: Mutans streptococci: Acquisition and transmission. Pediatr Dent 2006; 28(2): 106-109.
33. Wacińska-Drabińska M, Janicha J, Remiszewski A: Przyczyny występowania zaburzeń mineralizacji szkliwa zębów. Nowa Stomatol 2002; 3: 112-115.
34. Kelly A, Pomarico L, de Souza IP: Cessation of dental development in a child with idiopathic hypoparathyroidism: a 5-year follow-up. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107(5): 673-677.
35. Fukui N, Amano A, Akiyama S et al.: Oral findings in DiGeorge syndrome: clinical features and histologic study of primary teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89(2): 208-215.
36. Mittal S, Gupta D, Sekhri S et al.: Oral manifestations of parathyroid disorders and its dental management. J Dent Allied Sci 2014; 3: 34-38.
37. Wierink CD, van Diermen DE, Aartman IH et al.: Dental enamel defects in children with celiac disease. Int J Paediatr Dent 2007; 17(3): 163-168.
38. Jälevik B: Enamel hypomineralization in permanent first molars. A clinical, histo-morphological and biochemical study. Swed Dent J 2001; 149 (suppl.): 1-86.
39. Billings RJ, Berkowitz RJ, Watson G: Teeth. Pediatrics 2004; 113: 1120-1127.
40. Ventura AK, Worobey J: Early influences on the development of food preferences. Curr Biol 2013; 23(9): R401-R408.
41. De Cosmi V, Scaglioni S, Agostoni C: Early Taste Experiences and Later Food Choices. Nutrients 2017; 9(2). pii: E107.
otrzymano: 2019-10-10
zaakceptowano do druku: 2019-10-31

Adres do korespondencji:
*Angelika Kobylińska
Zakład Stomatologii Dziecięcej Warszawski Uniwersytet Medyczny
ul. Binieckiego 6, 02-097 Warszawa
tel.: +48 (22) 116-64-24
angelika.kobylinska@wum.edu.pl

New Medicine 4/2019
Strona internetowa czasopisma New Medicine