Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - New Medicine 4/2019, s. 152-157 | DOI: 10.25121/NewMed.2019.23.4.152
*Emil Korporowicz1, Piotr Firlej2, Dariusz Gozdowski3, Dorota Olczak-Kowalczyk1
Shear bond strength of different materials used for pit and fissure sealing
Wytrzymałość połączenia różnych materiałów stosowanych do uszczelniania bruzd i szczelin
1Department of Paediatric Dentistry, Medical University of Warsaw, Poland
Head of Department: Professor Dorota Olczak-Kowalczyk, MD, PhD
2Zhermapol Sp. z o.o., Warsaw, Poland
3Department of Experimental Statistics and Bioinformatics, Warsaw University of Life Science, Poland
Head of Department: Professor Wiesław Mądry, PhD
Streszczenie
Wstęp. Uszczelnianie bruzd i szczelin stanowi skuteczną metodę zapobiegania próchnicy, czego dowiedziono w wielu badaniach klinicznych. Zazwyczaj w technice tej stosuje się uszczelniacze na bazie żywic, choć w niektórych badaniach sugeruje się również stosowanie płynnych kompozytów. Najnowsze generacje tych materiałów obejmują samoadhezyjne kompozyty płynne i materiały kompozytowe typu bulkfill. Retencja tych materiałów stanowi jeden z głównych czynników przyczyniających się do zapobiegania próchnicy. Ich skuteczność kliniczną można oceniać za pomocą testów wytrzymałości połączenia, które pozwalają określić zdolność materiału do wiązania się ze szkliwem.
Cel pracy. Celem pracy była ocena wytrzymałości wiązania ze szkliwem następujących materiałów: Helioseal F (Ivoclar Vivadent), Vertise Flow (Kerr) i SDR (Dentsply Sirona) z systemem łączącym XP Bond (Dentsply Sirona).
Materiał i metody. Do trzech grup losowo przydzielono 15 stałych trzecich zębów trzonowych usuniętych z przyczyn ortodontycznych i opracowanych w celu uzyskania płaskiej powierzchni szkliwa. Na opracowanych powierzchniach przy użyciu formy polimeryzowano badane materiały ? Helioseal F, Vertise Flow oraz SDR z użyciem systemu łączącego XP Bond. Próbki zanurzono w wodzie destylowanej i pozostawiono w temperaturze 37°C na 24 godziny, a następnie umieszczono w urządzeniu Instron. Urządzenie zatrzymywało się przy pęknięciu próbki i rejestrowano obciążenie. Obliczano wartości wytrzymałości wiązania. Przeprowadzono analizę statystyczną. Ponadto w celu ustalenia rodzaju uszkodzenia próbki poddano badaniu z użyciem mikroskopu optycznego.
Wyniki. Analizą objęto 35 próbek, w tym 11 Helioseal F, 12 Vertise Flow i 12 SDR. Najwyższą wartość wytrzymałości wiązania odnotowano dla materiału SDR z systemem wiążącym XP ? 23,70 (± 6,35) MPa, nieco niższą dla Vertise Flow ? 20,10 (± 3,95) MPa oraz najniższą dla Helioseal F ? 15,93 (± 3,17) MPa. Stwierdzono statystycznie istotną różnicę między kompozytami płynnymi (SDR i Vertise Flow) a uszczelniaczami na bazie żywicy (Helioseal F). Stwierdzono 18 pęknięć kohezyjnych w obrębie szkliwa, 14 pęknięć adhezyjnych i 4 pęknięcia typu mieszanego.
Wnioski. Materiał SDR z systemem wiążącym XP Bond oraz materiał Vertise Flow charakteryzują się statystycznie wyższą wytrzymałością wiązania niż materiał Helioseal F. Niemniej jednak kluczowa wydaje się również ocena kliniczna skuteczności tych materiałów.
Summary
Introduction. Pit and fissure sealing is a effective procedure in preventing caries, as proven in numerous clinical trials. Materials used for this technique are usually resin-based fissure sealants, but some studies suggested using flowable composites as well. The latest generations of these materials include self-adhesive flowable composites and bulk fill composites. Retention of these materials is one of the main factors that contribute to caries prevention. Therefore, shear bond strength tests that determine the material’s ability to bond with the enamel may help determine their clinical effectiveness.
Aim. The aim of the study was to assess the shear bond strength to the enamel of the following materials: Helioseal F (Ivoclar Vivadent), Vertise Flow (Kerr), and SDR (Dentsply Sirona) with XP Bond (Dentsply Sirona).
Material and methods. 15 permanent third molars extracted for orthodontic reasons with prepared flat enamel surfaces were randomly divided into three groups. Tested materials ? Helioseal F, Vertise Flow and SDR with XP Bond were polymerised on these surfaces, using a mould. Samples were immersed in distilled water, kept at 37°C for 24 h, and then installed in an Instron testing machine. The machine stopped at sample fracture and the load was recorded. Shear bond strengths were calculated. Statistical analysis was performed. Also, samples were assessed using an optical microscope to assess sample failure type.
Results. 35 samples, including 11 Helioseal F, 12 Vertise Flow, and 12 SDR were analysed. SDR with XP bond had the highest shear bond strength ? 23.70 (± 6.35) MPa; Vertise Flow ? 20.10 (± 3.95) MPa, and Helioseal F the lowest ? 15.93 (± 3.17) MPa. There was a statistically significant difference between flowable composites (SDR and Vertise Flow) and resin-based fissure sealant (Helioseal F). There were 18 cohesive sample fractures within the enamel, 14 adhesive fractures and 4 mixed.
Conclusions. The shear bond strength of SDR with XP Bond and Vertise Flow is statistically significantly higher than that of Helioseal F. However, it is also crucial to clinically assess the effectiveness of these materials.
Introduction
Occlusal surfaces can be prone to caries due to their complicated morphology (1, 2). Sealing pits and fissures, which was introduced in the 60s, isolates the pit from the oral cavity and indirectly facilitates the cleaning of masticatory surfaces (1, 2). This procedure is highly effective in preventing caries as proven in numerous clinical trials (3-6). Nowadays, there are four groups of dental sealants: resin-based sealants, glass ionomer cements, polyacid-modified composite resins, and resin-modified glass ionomer cements (6). Despite numerous clinical studies, it is still impossible to unequivocally tell which sealant is the most effective. International scientific societies recommend resin-based sealants as they prevent caries and offer an acceptable level of retention. Glass ionomer cements should only be used temporarily, when it is impossible to fully isolate the area to be treated (5, 7, 8).
More efficient solutions are still being researched. Some studies suggested using flowable composites to seal pits and fissures (9). Properties like low viscosity, porosity and better abrasion resistance (9-11) can make flowable composites a good alternative to conventional fissure sealants (2, 10, 12). The latest generations of these materials include self-adhesive flowable composites, not requiring bonding before application (which shortens the clinical procedure) (13) and bulk fill composites with reduced polymerisation stress, which could be particularly beneficial in deep fissures (14).
Sealant retention is directly linked to micromechanical bonding between composite and enamel. Shear bond strength tests determine the material’s ability to bond with the tooth, and, in consequence, may help determine its clinical effectiveness (15).
Aim
The aim of the study was to assess the shear bond strength to the enamel of the following materials: Helioseal F (Ivoclar Vivadent) ? resin-based fissure sealant, Vertise Flow (Kerr) ? self-adhesive flowable composite, and SDR (Dentsply Sirona) ? bulk fill composite (which requires using a bonding agent).
Material and methods
Fifteen permanent third molars extracted for orthodontic reasons were used in the study. Healthy enamel from mesial, distal, lingual and buccal surfaces was prepared; surfaces were finished with grind paper with different abrasive grades (#320-600). The prepared surfaces were then assessed with an optic microscope (Smart Optic Basic, Seliga Microscopes) to exclude samples with exposed dentin. Thirty-five flat enamel surfaces were qualified for the study. The roots of the teeth were immersed in acrylic resin to facilitate mounting in the testing machine. Surfaces were then polished with a slow speed brush using Clean Polish paste (Kerr). Teeth were randomly divided into different material groups. The assessed surfaces were covered in strips with a 4 mm round holes to have even enamel surfaces for material adhesion. Surfaces were etched with 36% orthophosphoric acid (Arkona) for 20 seconds and then thoroughly rinsed and dried until enamel turned chalk white. A 4 mm high and 4 mm wide Honigum-Fast Putty (DMG) cylindrical matrix was prepared, in which selected materials were placed: Helioseal F was light cured in two 2 mm layers. The first layer of Vertise Flow was brushed into the enamel surface and then light cured; then, second layer was applied and cured. XP Bond (Dentsply) was thoroughly applied, dried for 20 seconds, then its excess was removed with compressed air, and finally light cured for ten seconds prior to SDR application. One 4 mm SDR layer was applied. Every material was cured using the Bluephase Style (Ivoclar Vivadent) lamp (fig. 1). Then, the samples were immersed in distilled water, kept at 37°C for 24 h, and installed in an Instrom testing machine (fig. 2). Its crosshead speed was set at 0.5 mm/min. The machine stopped at sample fracture and the load was recorded. To calculate bond strength, the force [N] was divided by the area of the material surfaces adhering to the enamel, using the formula of circle area ? P = πr2 [mm2]. Results were expressed in [MPa].
Fig. 1. Samples with tested materials
Fig. 2. Sample in the testing machine
Furthermore, the samples were evaluated with an optical microscope (Smart Optic Basic, Seliga Microscopes) with 17 x zoom to assess the sample failure. Samples were divided into the following groups: 1. Adhesive ? loss of bond between composite and enamel; 2. Cohesive ? within the material or enamel; 3. Mixed ? partially adhesive and cohesive.
Statistical analysis was conducted with the Statistica 12 software, using analysis of variance and Fisher’s least significant difference method for multiple comparisons. The p level was set at 0.05.
Results

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Simonsen RJ, Neal RC: A review of the clinical application and performance of pit and fissure sealants. Aust Dent J 2011; 56(1): 45-58.
2. Erdemir U, Sancakli HS, Yaman BC et al.: Clinical comparison of a flowable composite and fissure sealant: a 24-month split-mouth, randomized, and controlled study. J Dent 2014; 42(2): 149-157.
3. Ahovuo-Saloranta A, Forss H, Walsh T et al.: Sealants for preventing dental decay in the permanent teeth. Cochrane Database Syst Rev 2013; 28(3): CD001830.
4. Wright JT, Tampi MP, Graham L et al.: Sealants for Preventing and Arresting Pit-and-fissure Occlusal Caries in Primary and Permanent Molars. A systematic review of randomized controlled trials ? a report of the American Academy of Pediatric Dentistry and the American Dental Association. J Am Dent Assoc 2016; 147(8): 631-645.
5. Beauchamp J, Caufield PW, Crall JJ et al.: Evidence-based clinical recommendations for the use of pit and fissure sealant: a report of the American Dental Association Council on Scientific Affairs. J Am Dent Assoc 2008; 139: 257-268.
6. Wright JT, Crall JJ, Fontana M et al.: Evidence-based Clinical Practice Guideline for the Use of Pit-and-Fissure Sealants. A report of the American Dental Association and the American Academy of Pediatric Dentistry. J Am Dent Assoc 2016; 147(8): 672-682.
7. Welbury R, Raadal M, Lygidakis NA; European Academy of Paediatric Dentistry: EAPD guidelines for the use of pit and fissure sealants. Eur J Paediatr Dent 2004; 5(3): 179-184.
8. American Academy on Pediatric Dentistry Clinical Affairs Committee ? Restorative Dentistry Subcommittee; American Academy of Pediatric Dentistry Council on Clinical Affairs: Guideline on pediatric restorative dentistry. Pediatr Dent 2008-2009; 30(7): 163-169.
9. Corona SA, Borsatto MC, Garcia L et al.: Randomized, controlled trial comparing the retention of a flowable restorative system with a conventional resin sealant: one-year follow up. Int J Paediatr Dent 2005; 15(1): 44-50.
10. Kucukyilmaz E, Savas S: Evaluation of Different Fissure Sealant Materials and Flowable Composites Used as Pit-and-fissure Sealants: A 24-Month Clinical Trial. Pediatr Dent 2015; 7(5): 468-473.
11. Asefi S, Eskandarion S, Hamidiaval S: Fissure sealant materials: Wear resistance of flowable composite resins. J Dent Res Dent Clin Dent Prospects 2016; 10(3): 194-199.
12. Jafarzadeh M, Malekafzali B, Tadayon N, Fallahi S: Retention of a flowable composite resin in comparison to a conventional resin-based sealant: one-year follow-up. J Dent (Tehran) 2010; 7: 1-5.
13. Eliades A, Birpou E, Eliades T, Eliades G: Self-adhesive restoratives as pit and fissure sealants: a comparative laboratory study. Dent Mater 2013; 29(7): 752-762.
14. Bagherian A, Sarraf Shirazi A, Sadeghi R: Adhesive systems under fissure sealants: yes or no? A systematic review and meta-analysis. J Am Dent Assoc 2016; 147(6): 446-456.
15. Dhillon JK, Pathak A: Comparative evaluation of shear bond strength of three pit and fissure sealants using conventional etch or self-etching primer. J Indian Soc Pedod Prev Dent 2012; 30(4): 288-292.
16. Derelioglu S, Yilmaz Y, Celik P et al.: Bond strength and microleakage of self-adhesive and conventional fissure sealants. Dent Mater J 2014; 33(4): 530-538.
17. Schuldt C, Birlbauer S, Pitchika V et al.: Shear Bond Strength and Microleakage of a New Self-etching/Self-adhesive Pit and Fissure Sealant. J Adhes Dent 2015; 17(6): 491-497.
18. Biria M, Ghasemi A, Torabzadeh H et al.: Assessment of Microshear Bond Strength: Self-Etching Sealant versus Conventional Sealant. J Dent (Tehran, Iran) 2014; 11(2): 137-142.
19. Babaji P, Vaid S, Deep S et al.: In vitro evaluation of shear bond strength and microleakage of different pit and fissure sealants. J Int Soc Prev Community Dent 2016; 6: 111-115.
20. Ilie N, Scho?ner C, Bu?cher K, Hickel R: An in vitro assessment of the shear bond strength of bulk-fill resin composites to permanent and deciduous teeth. J Dent 2014; 42(7): 850-855.
21. Raposo CC, Santana IL: Shear bond strength of self-etch and total-etch adhesives to bovine enamel and dentin. Rev Odonto Cie?nc 2012; 27(2): 143-146.
22. Nagayassu MP, Shintome LK, Arana-Chavez VE, Fava M: Micro-shear bond strength of different adhesives to human dental enamel. J Clin Pediatr Dent 2011; 35(3): 301-304.
23. Kimmes NS, Barkmeier WW, Erickson RL, Latta MA: Adhesive bond strengths to enamel and dentin using recommended and extended treatment times. Oper Dent 2010; 35(1): 112-119.
otrzymano: 2019-11-25
zaakceptowano do druku: 2019-12-16

Adres do korespondencji:
*Emil Korporowicz
Zakład Stomatologii Dziecięcej Warszawski Uniwersytet Medyczny
ul. Binieckiego 6, 02-097 Warszawa
tel.: +48 (22) 116-64-24
pedodoncja@wum.edu.pl

New Medicine 4/2019
Strona internetowa czasopisma New Medicine