© Borgis - Postępy Fitoterapii 3/2009, s. 175-179
*Magdalena Jeszka, Joanna Kobus-Cisowska, Ewa Flaczyk
Liście morwy jako źródło naturalnych substancji biologicznie aktywnych
MULBERRY LEAVES AS A SOURCE OF BIOLOGICALLY ACTIVE COMPOUNDS
Katedra Technologii Żywienia Człowieka, Uniwersytet Przyrodniczy w Poznaniu
Kierownik Katedry: prof. dr hab. Józef Korczak
Summary
Mulberry, a fast-growing deciduous plant, grows under tropical, subtropical and temperate climate. It is known for ages for its different applications. Leaves, bark and root have long been used in Chinese medicine to treat fever, improve eyesight, strengthen joints, protect the liver, facilitate discharge of urine and lower blood pressure. Nowadays mulberry leaves and theirs extracts, due to a strong antioxidant activity, are used to prevent and treat wide range of civilization disorders.
In the paper morphology, rich phytochemistry and antioxidant potential of mulberry leaves are characterized. Flavonoids from this plant, including quercetin, rutin and isoquercitrin, as a free radical scavengers, show the potential effect against oxidative stress. Thus, the chemoprotective effect of mulberry leaves is discussed. The review is focused on the some examinations of plant leaves and its extracts as a potent influence on cardiovascular diseases, especially inhibit LDL oxidation and prevent atherosclerosis. Diabetes, the new disorder of XXI century, could be prevented and treated by components of mulberry leaves. Numerous studies have reported that mulberry plant is effective against hyperglycemia and lipid peroxidation. Neuroprotective function of mulberry leaves extracts are also described. Last examinations show that mulberry leaves extracts have a promising skin whitening activities. Antibacterial and antiviral activities of mulberry leaves extracts are also characterized.
Wstęp
Morwa jest zrzucającą liście rośliną, która rośnie w różnym klimacie od tropikalnego, subtropikalnego, aż do umiarkowanego (1). Morwa biała ( Morus alba) pochodzi z Chin, Japonii i Indii, a źródła historyczne podają, że wszystkie jej części, a więc owoce, liście, czy też kora, były wykorzystywane w medycynie już w XXX wieku p.n.e. Do Europy została przywieziona w XI wieku n.e. wraz z gąsienicami jedwabnika. Morwa występuje w wielu krajach Azji, Europy i Ameryki, jak również w Polsce. Jej uprawa rozpowszechniła się ze względu na hodowlę jedwabników ( Bombyx mori). Ciekawostką jest fakt, że liście morwy są przykładem heterofilii, tzn. że na jednym drzewie liście mogą przybierać różne kształty, w tym klapowy i bezklapowy. W naszej szerokości geograficznej młode pędy i liście zaczynają rosnąć w maju, osiągając zieloną i lśniącą barwę, a w październiku, już jako intensywnie żółte, opadają. Owoce, kształtem i wielkością zbliżone do malin, przybierają barwę w zależności od gatunku od białej po różową, czerwoną, aż do czarnej. Owoce dojrzewają pod koniec lipca, dojrzałe samoistnie spadają z drzewa. Drzewo morwowe rośnie szybko do wieku 40-50 lat, później jednak dynamika wzrostu spada, choć żyje 200-300 lat. W Polsce występuje najczęściej morwa biała, czego przykładem jest odmiana ´Wielkolistna Żółwińska´ uprawiana w Wielkopolsce, natomiast w krajach azjatyckich spotyka się inne gatunki, takie jak morwa czerwona ( Morus rubra) i czarna ( Morus nigra) oraz wiele innych odmian morwy (nawet 150) (2-4). Klasyfikację botaniczną morwy przedstawiono w tabeli 1.
Tabela 1. Klasyfikacja botaniczna morwy białej.
Takson | Nazwa polska | Nazwa łacińska |
Domena | jądrowce | Eukarya |
Królestwo | rośliny | Plantae |
Podkrólestwo | naczyniowe | Tracheobionta |
Nadgromada | nasienne | Spermatophyta |
Typ, Gromada | okrytonasienne | Magnoliophyta |
Klasa | dwuliścienne | Magnoliopsida |
Rząd | pokrzywowce | Urticales |
Rodzina | morwowate | Moraceae |
Rodzaj | morwa | Morus L. |
Gatunek | morwa biała | Morus alba L. |
Dotychczas liście morwy produkowano przede wszystkim jako karmę dla jedwabników. Jednakże ze względu na zmiany technologiczne (produkcja tanich sztucznych włókien), jak i coraz większe zagrożenie chorobami cywilizacyjnymi, zmieniło się przeznaczenie liści morwy.
W Japonii wzrasta konsumpcja herbaty z liści z uwagi na właściwości odchudzające i przeciwcukrzycowe naparu, a Hindusi przygotowują potrawę o nazwie „paratha” z wysuszonych sproszkowanych liści morwy i mąki pszennej (1). Wzrost zainteresowania herbatkami z liści morwy i preparatami farmakologicznymi obserwuje się również na polskim rynku (dane niepublikowane).
Skład chemiczny i wartość odżywcza liści morwy
Liście morwy białej zawierają dużą ilość białka, tłuszczu, węglowodanów, błonnika, składników mineralnych (wyrażone jako popiół całkowity) oraz witamin i prowitamin, takich jak witamina C, witaminy z grupy B (B1, B2, B6), D, E, kwas foliowy, kwas nikotynowy (witamina PP), b-karoten, ksantofile (tab. 2). Białka bogate są w takie aminokwasy egzogenne, jak metionina, treonina, lizyna, histydyna, leucyna i tryptofan. Zawierają także argininę, prolinę i kwas asparaginowy (5-8).
Tabela 2. Skład chemiczny liści morwy białej (wg 6-8).
Składnik | Zawartość s.m. % | Składnik | Zawartość (mg/100 g s.m.) |
Woda | 5,11-10,57 | Kwas askorbinowy | 100-200 |
Białko | 15,31-30,91 | ß-Karoten | 8,44-13,13 |
Tłuszcz | 1,99-7,92 | Szczawiany | 183 |
Cukry | 9,70-39,70 | Fityny | 156 |
Popiół całkowity | 11,3-17,24 | Żelazo | 19-50 |
Błonnik surowy | 9,9-13,85 | Cynk | 0,72-3,65 |
Kwas taninowy | 0,13-0,36 | Wapń | 786-2727 |
NDF - detergentowy błonnik pokarmowy | 27,6-43,6 | Fosfor | 970 |
Liście morwy, oprócz podstawowych składników chemicznych, są bogate w związki o działaniu fizjologicznym mogące mieć zastosowanie w farmakologii. Są to, między innymi związki polifenolowe, takie jak flawonoidy: 3-(6-malonyloglikozyd) kwercetyny, 3-(6-malonyloglikozyd) kemferolu, rutyna, izokwercytryna, astragalina, pochodne moracetyny oraz inne glikozydy, taniny, kumaryny: skopolina oraz skimina, a także fenolokwasy: kwas chlorogenowy i kwas kawowy (3, 9-13). Składnikami biologicznie aktywnymi liści morwy są także alkaloidy działające przeciwdiabetycznie, w tym 1,5-dideoksy-1,5-imino-D-sorbitol (DNJ) oraz jego pochodne. Liście morwy zawierają również terpeny, takie jak cytral, octan linalolu, linalol czy cis-3-heksen-1-ol, wpływające na atrakcyjność liści dla larw jedwabników; hormon wzrostu dla larw jedwabników oraz steroidy, np. b-sitosterol (8, 14, 15).
Otrzymano 60% ekstrakt etanolowy z liści morwy białej (16), który zawierał 25,22 mg/g s.m. polifenoli (oraz innych związków redukujących), czyli o 12,05 mg/g s.m. więcej niż ekstrakt z liści mięty. Tak jak wspomniano wyżej, liście morwy są bogate w fenolokwasy, kumaryny, taniny i inne polifenole. Dlatego też zawartość flawonoidów w ekstrakcie z morwy wynosiła 21,66 mg/g s.m., a w ekstrakcie z liści mięty 27,05 mg/g s.m.
Katsube i wsp. (17) stwierdzili, że na zawartość polifenoli ma wpływ również temperatura suszenia liści. Liście morwy białej suszone w temperaturze 60°C mają najwyższą zawartość glikozydów flawonoli.
Liście morwy są pożywne, smaczne i nietoksyczne. Dzięki wysokim właściwościom odżywczym zostały wykorzystane do skarmiania przeżuwaczy, np. w celu polepszania jakości mleka (18).
Właściwości liści morwy w układach biologicznych
Wiele substancji występujących w liściach morwy zostało wyizolowanych lub wyekstrahowanych, aby udokumentować prozdrowotne działania tych związków w różnych układach biologicznych.
Stres oksydacyjny i potencjał antyoksydacyjny liści morwy
Wolne rodniki tlenowe (ROS), takie jak anionorodnik tlenowy (O2--), w normalnych warunkach są dezaktywowane przez naturalne mechanizmy obronne organizmu. Jednak wiele czynników zewnętrznych lub wewnętrznych, np. stres lub zanieczyszczenie środowiska, zaburza homeostazę. Powstaje wtedy stres oksydacyjny organizmu. Aby nie dochodziło do takiej sytuacji, należy spożywać owoce, warzywa oraz rośliny zielarskie bogate w naturalne antyoksydanty. Katsube i wsp. (11) odkryli, że w liściach morwy białej w największej ilości znajdują się 3-(6-malonyloglikozyd) kwercetyny oraz rutyna i że są one dominującymi antyoksydantami tej rośliny. Wiele innych doniesień naukowych wskazuje na to, że ekstrakty z liści morwy wykazują wysoki potencjał antyoksydacyjny (19). Butanolowy ekstrakt z liści wychwytuje rodniki DPPH (20). Pochodna moracetyny, wyizolowana z liści, inhibuje rodniki ponadtlenkowe i w ten sposób może się przyczyniać do ochrony przed autooksydacją (21).
Liście morwy zawierają też więcej kwercetyny niż cebula, dlatego mogą zostać wykorzystane w aplikacjach w celu zmniejszania stresu oksydacyjnego w układach in vitro i in vivo (10, 11, 22, 23). Według Wattanapitayakula i wsp. (24) wodny ekstrakt z liści morwy Morus alba wykazuje wysoką aktywność redukującą żelazo III wartościowe.
Liście morwy w zapobieganiu chorób cywilizacyjnych
Wiele doniesień naukowych wskazuje na to, że substancje chemiczne znajdujące się w liściach morwy mogą zapobiegać chorobom cywilizacyjnym, takim jak choroby układu krążenia, cukrzyca, choroby układu nerwowego, czy wykazywać potencjalne działanie chemoprewencyjne.
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
24 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
59 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
119 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 28 zł
Piśmiennictwo
1. Srivastava S, Kapoor R, Thathola A i wsp. Mulberry ( Morus alba) leaves as human food: a new dimension of sericulture. Int J Food Sci Nutr 2003; 54:411-6. 2. Bown D. Encyclopedia of herbs and their uses, London: Dorling Kindersley; 1995. p. 313-4. 3. Butt MS, Nazir A, Sultan T. i wsp. Morus alba L. nature´s functional tonic, Trends Food Sci Technol 2008; 19:505-12. 4. Seneta W, Dolatowski J. Dendrologia. Warszawa: Wydawnictwa Naukowe PWN; 2007. 5. Bose PC. Genetic resources of mulberry and utilization. Mysore, India: CSR and TI; 1989. p.183-90. 6. Jeszka M, Flaczyk E. HPLC analysis – determination of flavonols in Morus alba leaves. Materiały konferencyjne: III. International Scientific Conference of PhD. Students, Faculty of Biotechnology and Food Sciences and Faculty of Agrobiology and Food Resources at Slovak University of Agriculture in Nitra, 28th November 2008. p.118-20. 7. Srivastava S, Kapoor R, Thathola A. Nutritional quality of leaves of some genotypes of mulberry ( Morus alba). Int J Food Sci Nutr 2006; 57:305-13. 8. Yen GC, Wu S, Duh PD. Extraction and identification of antioxidant components from the leaves of mulberry ( Morus alba L.). J Agric Food Chem 1996; 44:1687-90. 9. Doi K, Kojima T, Makino M i wsp. Studies on the constituents of the leaves of Morus alba L. Chemical Pharmacol Bull 2001; 49:151-3. 10. Enkhmaa B, Shiwaku K, Katsube T i wsp. Mulberry ( Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. J Nutrition 2005; 135:729-34. 11. Katsube T, Imawaka N, Kawano Y i wsp. Antioxidant flavonol glycosides in mulberry ( Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem 2006; 97(1):25-31. 12. Kim SY, Gao JJ, Lee, WC. Antioxidative flavonoids from the leaves of Morus alba. Arch Pharm 1999; 22:81-5. 13. Onogi A, Osawa K, Yasuda H i wsp. Flavonol glycosides from the leaves of Morus alba L. Shoyakugaku Zasshi 1993; 47:423-5. 14. Asano N, Yamashita T, Yasuda K i wsp. Polyhydroxylated alkaloids isolated from mulberry trees ( Morus alba L.) and silkworms ( Bombyx mori L.). J Agric Food Chem 2001; 49:4208-13. 15. Chen FJ, Nakashima N, Kimura I i wsp. Potentiating effects on pilocarpine-induced saliva secretion, by extracts and N-containing sugars derived from mulberry leaves, in streptozocin-diabetic mice. Biol Pharm Bull 1995; 18(12):1676-80. 16. Liu H, Qiu N, Ding H i wsp. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res Int 2008; 41:363-70. 17. Katsube T, Tsurunaga Y, Sugiyama M i wsp. Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry ( Morus alba L.) leaves. Food Chem 2009; 113:964-9. 18. Sastri BN. The wealth of India, raw materials. New Delhi, India: Council of Scientific and Industrial Research; 1962. p.429-39. 19. Arabshahi-Delouee S, Urooj A. Antioxidant properties of various solvent extracts of mulberry ( Morus indica L.) leaves. Food Chem 2007; 102:1233-40. 20. Doi K, Kojima T, Fujimoto Y. Mulberry leaf extract inhibits oxidative modification of rabbit and human low-density lipoprotein. Biol Pharm Bull 2000; 23:1066-71. 21. Lee SH, Choi SY, Kim H. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol Pharm Bull 2002; 25:1045-8. 22. Chen J, Li X. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac J Clin Nutr 2007; 16:290-4. 23. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects in superoxide radicals. Food Chem 1999; 64:555-9. 24. Wattanapitayakul SK, Chularojmontri L, Herunsalee A i wsp. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharm Toxicol 2005; 96:80-7. 25. Choi EM, Hwang JK. Effects of Morus alba leaf extract on the production of nitric oxide prostaglandin E2 and cytokines in RAW264.7 macrophages. Fitoterapia 2005; 76:608-13. 26. Chai OH, Lee MS, Han EH i wsp. Inhibitory effects of Morus alba on compound 48/80-induced anaphylactic reactions and anti-chicken gamma globulin IgE mediated mast cell activation. Biol Pharm Bull 2005; 28:1852-8. 27. Harauma A, Murayama T, Ikeyama K i wsp. Mulberry leaf powder prevents atherosclerosis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2007; 358:751-6. 28. Niidome T, Takahashi K, Goto Y i wsp. Mulberry leaf extract prevents amyloid beta-peptide fibryl formation and neurotoxicity. Neuroreport 2007; 18:813-6. 29. Tierney LM, McPhee SJ, Papadakis MA. Current medical diagnosis and treatment: International edition. New York: Lange Medical Books/McGraw-Hill; 2002. 30. Nuengchamnong N, Ingkaninan K, Kaewruang W i wsp. Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography etandem mass spectrometry. J Pharm Biomed Anal 2007; 44:853-8. 31. Rosołowska-Huszcz D. Antyoksydanty w profilaktyce i terapii cukrzycy typu 2. Żywność Nauka Technologia Jakość 2007; 6(55):62-70. 32. Musabayane CT, Bwititi PT, Ojewole JA. Effects of oral administration of some herbal extracts on food consumption and blood glucose levels in normal and streptozotocin-treated diabetic rats. Methods Find Exp Clin Pharmacol 2006; 28:223-8. 33. Oku T, Yamada M, Nakamura M i wsp. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. Br J Nutr 2006; 95:933-8. 34. Syvacy A, Sokmen M. Seasonal changes in antioxidant activity total phenolic and anthocyanin constituent of the stems of two Morus species ( Morus alba L. and Morus nigra L.). Plant Growth Regulation 2004; 44:251-6. 35. Kimura T, Nakagawa K, Kubota H i wsp. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem 2007; 55(14):5869-74. 36. Hansawasdi C, Kawabata J. Alpha-glucosidase inhibitory effect of mulberry ( Morus alba) leaves on Caco-2. Fitoterapia 2006; 77:568-73. 37. Mudra M, Ercan-Fang N, Zhong L. Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care 2007; 30(5):1272-4. 38. Lee J, Chae K, Ha J i wsp. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis and Artemisia capillaris in high-fat diet-induced obese mice. J Ethnopharmacol 2008; 115:263-70. 39. Oh KS, Ryu, SY, Lee S i wsp. Melanin-concentrating hormone-1 receptor antagonism and anti-obesity effects of ethanolic extract from Morus alba leaves in diet-induced obese mice. J Ethnopharmacol 2009; 122:216-20. 40. Iozumi K, Hoganson GE, Pennella R i wsp. Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes. J Invest Dermatol 1993; 100:806-11. 41. Khan KM, Maharvi GM, Abbaskhan A i wsp. Three tyrosinase inhibitors and antioxidant compounds from Salsola foetida. Helv Chim Acta 2003; 86:457-64. 42. Andallu B, Varadacharyulu NC. Antioxidant role of mulberry ( Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin Chim Acta 2003; 338:3-10. 43. Fang SH, Hou YC, Chao PD. Pharmacokinetic and pharmacodynamic interactions of morin and cyclosporine. Toxicol Appl Pharmacol 2005; 205:65-70. 44. Harborne SB, Baxter H. Phytochemical dictionary. In: A handbook of bioactive compounds from plants. London: Taylor and Francis; 1995. 45. Ahmad I, Beg A. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 2001; 74:113-23. 46. Fukai T, Kaitou K, Terad S. Antimicrobial activity of 2-arylbenzofurans from Morus species against methicillin-resistant Staphylococcus aureus. Fitoterapia 2005; 76:708-11. 47. Ono K, Nakane H, Fukushima M i wsp. Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases. Eur J Biochem 1990; 190(3):469-78. 48. Ratner L, Heyden NV. Mechanism of action of N-butyl deoxynojirimycin in inhibiting HIV-1 infection and activity in combination with nucleoside analogs. AIDS Res Hum Retroviruses 1993; 9(4):291-7. 49. Watson AA, Fleet GWJ, Asano N i wsp. Polyhydroxylated alkaloids – natural occurrence and therapeutic applications. Phytochemistry 2001; 56(3):265-95.