© Borgis - Postępy Fitoterapii 1/2013, s. 54-62
*Bożena Muszyńska, Mirosław Malec, Katarzyna Sułkowska-Ziaja
Właściwości lecznicze i kosmetologiczne drożdży piekarniczych (Saccharomyces cerevisiae)
Medicinal and cosmetological properties of Ssaccharomyces cerevisiae
Katedra i Zakład Botaniki Farmaceutycznej, Uniwersytet Jagielloński Collegium Medicum, Kraków
Kierownik Katedry: dr hab. Halina Ekiert, prof. nadzw. UJCM
Summary
Saccharomyces cerevisiae are one cellular organisms, occurring under natural conditions in all environments that contain carbohydrates. They are without a doubt among the organisms, where the biochemical activity man had used at the earliest. Already in antiquity Hippocrates recommended the use of a beverage prepared from yeast as the vitaminic and vitalizing. In the Pharmacopoeia of Polish II, are monographs of Faex medicinalis (Fermentum cerevisiae) – medical yeasts used as a vitamin solution and to the drawing up of tablets. S. cerevisiae are an integral part of the microflora of different foods and are traditionally used in industrial fermentation processes (production of bread, beer, wine). Currently for consumers yeast are produced in the form of dried or lyophilized. There are a wide range of food products of plant and animal, which would have a significant impact on the organoleptic properties. Saccharomyces cerevisiae in recent decades are available as supplements due to the high content of vitamins of group B, proteins, amino acids and minerals – zinc, phosphorus, magnesium, selenium, and chromium. Yeasts are the model organism for molecular biology of eucarionts. In addition, Saccharomyces cerevisiae are inexpensive in cultivation, non-toxic and nonpathogenic. These organisms so are good material for research. For over a quarter of a century, yeasts are used successfully for the production of medicines, for example: hirudin, insulin, and vaccines against hepatitis B. In addition, yeasts are important in the study of the phenomenon of the multi-medicines resistance. In recent years demonstrated that the yeast can be used for the production of anticancer vaccines. S. cerevisiae is now an ideal model to study human neurodegenerative diseases.
Wstęp
Drożdże piekarnicze (Saccharomyces cerevisiae) są jednokomórkowymi grzybami, występującymi w warunkach naturalnych we wszystkich środowiskach zawierających węglowodany. Jest to bez wątpienia jeden z mikroorganizmów, którego aktywność biochemiczną ludzie wykorzystywali najwcześniej. Już w starożytności Hipokrates zalecał stosowanie napoju przygotowanego z drożdży, jako preparatu witaminowego i wzmacniającego.
W Farmakopei Polskiej II znajdują się monografie dotyczące Faex medicinalis (syn. Fermentum cerevisiae) – drożdży lekarskich, stosowanych, jako środek witaminowy i do sporządzania tabletek. S. cerevisiae są nieodłączną częścią mikroflory różnych pokarmów i są tradycyjnie stosowane w przemysłowych procesach fermentacyjnych (piekarnictwo, produkcja piwa, wina). Obecnie na rynku można spotkać je w postaci wysuszonej lub liofilizowanej. Występują w szerokiej gamie produktów spożywczych pochodzenia roślinnego i zwierzęcego, gdzie mają istotny wpływ na właściwości organoleptyczne. Zarówno drożdże piekarnicze, jak i piwne, w ostatnich dziesięcioleciach dostępne były jako suplementy diety ze względu na wysoką zawartość witamin z grupy B, białek, aminokwasów oraz związków mineralnych – cynk, fosfor, magnez, selen, chrom. Drożdże są modelowym organizmem w biologii molekularnej eukariotów. Ponadto są łatwe w hodowli, tanie w utrzymaniu, nietoksyczne i niechorobotwórcze. Dzięki temu są dobrym materiałem do badań. Drożdże są pierwszym organizmem eukariotycznym, którego genom został zsekwencjonowany i opublikowany (w 1996 roku) i od tego czasu stał się przedklinicznym modelem i cennym narzędziem do analizy podstawowych procesów komórkowych u eukariotów (1). Znacznie ułatwiło to badania nad genomami różnych organizmów. Ponadto istnieje możliwość heterologicznej ekspresji genów innych eukariotów, która nabrała większego znaczenia w momencie, kiedy okazało się, że wiele chorobotwórczych, a nawet letalnych mutacji znajduje się w genach ludzkich, które mają homologiczne geny w genomie drożdży. Według oszacowań naukowców, około 23% genomu drożdży jest takie samo jak genomu ludzkiego.
Od ponad ćwierć wieku drożdże są wykorzystywane z powodzeniem do produkcji leków, między innymi hirudyny (białka o działaniu przeciwzakrzepowym), insuliny (2) oraz szczepionek przeciwko WZW typu B (3). Ponadto, drożdże mają znaczenie w badaniach nad zjawiskiem wielooporności lekowej. Ostatnie lata udowodniły, że drożdże mogą być też wykorzystywane do produkcji szczepionek przeciwnowotworowych.
S. cerevisiae stanowią obecnie idealny model do badania ludzkich chorób neurodegeneracyjnych, gdyż wiele ścieżek sygnałowych i białek związanych z chorobami neurologicznymi jest konserwatywna u tego eukariota. Zdolność fermentacji powoduje, że drożdże są również dobrym modelem do badań chorób związanych z dysfunkcją mitochondriów oraz do badań nad właściwościami białek prionowych. Należy dodać, że drożdże używane są także jako probiotyczny suplement pirogronianu w leczeniu zapalenia okrężnicy, wywołanego przez Clostridium difficile.
Drożdże nie są drogim surowcem, a ich dodatek do różnych kosmetyków daje nam możliwość zwalczania wielu niedoskonałości i chorób skóry, takich jak trądzik, łojotok, nadmierne rogowacenie naskórka, czy też rozstępy (4).
Związki i pierwiastki o aktywności biologicznej występujące w komórkach Saccharomyces cerevisiae
Drożdże są źródłem łatwo przyswajalnego białka. Zbudowane są w 40% z aminokwasów proteinogennych, peptydów i protein. Ze ściany komórkowej drożdży został izolowany zymosan (wzór zymosanu przedstawia rycina 1), związek będący β-1,3-glukanem, działającym aktywująco na układ immunologiczny poprzez pobudzenie makrofagów (5). Wśród witamin z grupy B, które biorą udział w przemianach węglowodanów, tłuszczów i białek, drożdże zawierają witaminę H (biotynę, zwaną także witaminą B7), która przywraca włosom sprężystość, a także hamuje siwienie i wypadanie włosów. Objawami niedoboru biotyny są zmiany skórne – wysypki, stany zapalne, a także wypadanie włosów, podwyższony poziom cholesterolu oraz zmiany zapalne jelit.
Ryc. 1. Wzór strukturalny zymosanu.
Drożdże są także bogatym źródłem kwasu pantotenowego, błędnie utożsamianego z witaminą B5, będącą mieszaniną następujących związków chemicznych: kwasu pantotenowego, panteiny (pochodnej kwasu pantotenowego), pantenolu (należącego do grupy alkoholi, niewystępującego w przyrodzie, ale aktywnego biologicznie dla zwierząt) oraz koenzymu A (aktywnej biologicznie formy kwasu pantotenowego). Kwas pantotenowy jest niezbędny do prawidłowego metabolizmu białek, cukrów i tłuszczów oraz do syntezy niektórych hormonów; przyspiesza gojenie ran, bierze udział w wytwarzaniu tłuszczów, cholesterolu, hormonów i neuroprzekaźników, uczestniczy w regeneracji tkanek, poprawia pigmentację i stan włosów. Objawami jego niedoboru są zaburzenia układu nerwowego, omdlenia, wypadanie włosów, przedwczesna siwizna, łysienie, zmiany skórne i obstrukcja.
Ponadto drożdże zawierają witaminy: B1, B2, B6, PP, kwas foliowy i inozytol.
Obecny w drożdżach cynk jest niezbędny do prawidłowego metabolizmu glukozy i poziomu cukru we krwi. Oprócz innych istotnych funkcji, cynk jest potrzebny do wytwarzania i wydzielania insuliny przez trzustkę. Współpracuje on z chromem i innymi składnikami diety w celu ułatwienia wykorzystania insuliny przez komórki. Diabetycy szybciej niż zdrowi ludzie wydalają cynk z organizmu. U osób z zaćmą często występują niedobory cynku, co prowadzi między innymi do problemów, takich jak osłabiony metabolizm glukozy w soczewkach. Brak cynku w siatkówce oka bardzo często prowadzi do zwyrodnienia plamki żółtej. Wpływ cynku na syntezę białka i związane z tym procesy biologiczne sprzyjają regeneracji tkanek skóry. Szereg podwójnie ślepych prób klinicznych wskazuje również na skuteczność cynku w leczeniu trądziku. Poza jego wpływem na gojenie się zmian chorobowych, ważną rolę odgrywają również jego prawdopodobne właściwości immunologiczne, wpływ na gospodarkę hormonalną oraz zdolność pobudzania wytwarzania prostaglandyn o działaniu przeciwzapalnym.
Ze względu na groźne następstwa zdrowotne związane z niedoborem selenu, na rynku farmaceutycznym pojawiło się wiele preparatów zawierających ten pierwiastek. Są to głównie preparaty wielowitaminowe i wielominerałowe. Selen wchodzący w ich skład na ogół występuje w postaci selenianu sodu, ale również i drożdży selenowych. Są to produkty przygotowane na bazie drożdży z gatunku Saccharomyces cerevisiae i Saccharomyces uvarum z wbudowanym w procesie biotechnologicznym jonem Se2+ w aminokwasy białka drożdży. Dla organizmu człowieka dzienne zapotrzebowanie wynosi około 60 μg/g, natomiast dawki powyżej 800 μg/g powodują zatrucia. Wszystkie związki selenu dobrze wchłaniają się z przewodu pokarmowego oraz z układu oddechowego. Selen jako przeciwutleniacz ogranicza szkodliwe procesy peroksydacji lipidów, DNA i RNA, a więc chroni komórki przed deformacją i uszkodzeniami genetycznymi. Na poziomie komórkowym odpowiada za detoksykację wszystkich wolnych rodników. Wchodzi w skład peroksydazy glutationu, działającej jako czynnik antyoksydacyjny, zaliczany do grupy tzw. zmiataczy wolnych rodników, co wykorzystuje się w terapii przeciwnowotworowej. Ostatnio stwierdzono pozytywny wpływ selenu na przebieg takich chorób, jak AIDS i stwardnienie rozsiane (6).
Ponadto suche drożdże zawierają 8-9% soli mineralnych, w tym 605 mg fosforu, 20 mg wapnia i 4,9 mg żelaza w 100 g drożdży, 1% ergosterolu będącego prowitaminą D2, 4% lecytyny, enzymy (zymazę, inwertazę, maltazę), a także 0,1% glutationu – tripeptydu kwasu glutaminowego, cysteiny oraz glicyny (wzór glutationu przedstawiono na rycinie 2). Biologiczne funkcje, jakie spełnia on w komórkach, wiążą się z obecnością aktywnej grupy sulfhydrylowej, dzięki której bierze on udział w reakcjach antyoksydacyjnych i detoksykacyjnych. Obecny w drożdżach selen jest antyoksydantem wspomagającym działanie witaminy E, aktywizuje system immunologiczny, a także opóźnia rozwój nowotworów (7).
Ryc. 2. Wzór strukturalny glutationu (C10H17N3O6S).
Drożdże jako suplement diety
Definicja suplementów diety, opublikowana w ustawie o bezpieczeństwie żywności i żywienia (Dz. U. 171 poz. 1225). wskazuje, że są to środki spożywcze, których celem jest uzupełnienie normalnej, prawidłowo zróżnicowanej diety. Środki te muszą być skoncentrowanym źródłem witamin, składników mineralnych lub innych substancji wykazujących efekt odżywczy lub inny fizjologiczny. Na polskim rynku co roku pojawia się coraz więcej nowych preparatów zawierających wyciąg z drożdży (4). Preparat Dromin, produkowany swego czasu przez firmę Apipol-Farma, polecany był w okresie intensywnego wzrostu młodzieży, w okresach osłabienia wynikającego z niezrównoważonej diety i przemęczenia, a zwłaszcza w tych wszystkich przypadkach, które objawiają się problemami skórnymi. Z kolei preparat Lewitan, ze względu na zawartość witamin B1, B2, B5, B6, B12, B15, a także kwasu rybonukleinowego, zalecany jest osobom po przebytej chorobie, czy też zabiegu operacyjnym. Wpływa on korzystnie na skórę, włosy i paznokcie, poprawia również stan cery u młodzieży w okresie dojrzewania. Reguluje pracę wątroby i trzustki, a także jest ważnym elementem diety diabetyków.
Zawarte w drożdżach witaminy z grupy B bardzo korzystnie oddziałują na system nerwowy, łagodząc objawy stresu i psychicznego wyczerpania. Przeprowadzono wiele eksperymentów, podając drożdże osobom z poważnymi dolegliwościami psychicznymi. Nawet w takiej chorobie, jak schizofrenia, rezultaty były zaskakujące. Niezwykłe działanie drożdży na psychikę człowieka ma bardzo proste wytłumaczenie. Odkrycia medyczne wskazują, że zaburzenia umysłowe bardzo często są związane z niedoborem witaminy B3, nazywanej również witaminą PP, a jej bogatym źródłem są właśnie drożdże. Dlatego mogą być one stosowane pomocniczo w psychoterapii. Drożdże mają ponadto zastosowanie, jako lek wspomagający, w leczeniu rwy kulszowej i zapalenia nerwów.
Drożdże znajdują także zastosowanie w walce z nadwagą. Okazuje się, że w tym obszarze są bardzo skuteczne. Co roku miliony ludzi na całym świecie wydaje olbrzymie pieniądze na różnego rodzaju środki odchudzające. Mimo tego nie mogą oni pozbyć się zbędnych kilogramów lub tracą je na krótko, by ponownie przytyć. Rodzi się pytanie, jaka jest tego przyczyna? Podstawowym powodem jest źle funkcjonujący układ trawienny. Za jego prawidłowe działanie odpowiada między innymi witamina B6, która aktywizuje enzymy w organizmie człowieka. Niedobór tej witaminy prowadzi do zachwiania procesów przemiany materii, w konsekwencji prowadząc do nadwagi. Osoby otyłe, które często cierpią na migreny, mają niedobory witaminy B6. Niedobór tej witaminy jest również ważnym czynnikiem ryzyka rozwoju miażdżycy, zwiększającej się możliwość powstania udaru czy choroby niedokrwiennej serca.
W ostatnich latach chrom odgrywa ważną rolę jako środek wspomagający odchudzanie, gdyż dzięki zdolności regulowania poziomu cukru we krwi może być pomocny w ograniczaniu apetytu. Bogatym źródłem tego mikroelementu są właśnie drożdże. Kuracja drożdżowa może przynieść dużo lepsze i trwalsze efekty, niż wiele innych diet, likwidując nadwagę oraz uporczywe bóle głowy.
Zastosowanie Saccharomyces cerevisiae w chorobach neurodegeneracyjnych
Choroby neurodegeneracyjne należą obecnie do najbardziej niszczycielskich chorób w populacji osób starszych. Zrozumienie i leczenie ich jest jednym z największych wyzwań stawianych współczesnej medycynie w krajach rozwiniętych. Neurodegeneracyjne proteinopatie są grupą chorób, w których pojedyncze białko lub zespół białek zaczyna przyjmować anormalne konformacje, sprzyjające agregacji i tworzeniu złogów amyloidowych. Ich umiejscowienie w tkankach lub organach jest charakterystyczne dla każdej choroby neurodegeneracyjnej (8, 9). Następstwem anormalnej konformacji białek jest utrata ich funkcji lub nabycie właściwości cytotoksycznych. Oba te przypadki doprowadzają najczęściej do śmierci organizmu. Kształt złogów amyloidowych zawsze, niezależnie od tego, z jakich białek powstały, przyjmuje postać fibryli o strukturze β-harmonijki. W początkach badań nad złogami uważano, że pojawienie się ich w komórce zawsze wiązało się z działaniem cytotoksycznym. Obecne badania wskazują na to, że takie właściwości mają tylko małe agregaty – dimery i oligomery (10).
Podstawowe mechanizmy i ścieżki leżące u podstaw chorób neurodegeneracyjnych są bardzo dobrze skorelowane w komórkach ludzkich i drożdży. Dzięki temu istnieje możliwość szczegółowych badań molekularnych. Jeśli gen zaangażowany w daną chorobę ma homolog w komórkach drożdży, możliwe staje się przebadanie go bezpośrednio. Z drugiej strony, jeśli gen leżący u podstawy choroby jest nieobecny w drożdżach, ale wywołuje chorobę u ludzi, to może być modelowany poprzez heterologiczną ekspresję ludzkiego genu w komórkach drożdży (11).
Choroba Huntingtona
Choroba Huntingtona ma podłoże genetyczne i obejmuje ośrodkowy układ nerwowy. Jej nazwa pochodzi od nazwiska lekarza Georga Huntingtona, który jako pierwszy opisał ją w 1872 roku. Powoduje ona obumieranie komórek (neuronów) w niektórych częściach mózgu: jądrze ogoniastym i skorupie oraz w miarę rozwoju choroby w korze mózgowej. Jądro ogoniaste i skorupa powiązane są z wieloma innymi rejonami mózgu i pomagają w kontrolowaniu ruchów ciała, emocji, myślenia oraz w postrzeganiu świata (12, 13). Pląsawica Huntingtona spowodowana jest mutacją w obrębie chromosomu 4. Choroba ta dziedziczona jest autosomalnie dominująco, niekiedy zdarzają się również mutacje spontaniczne. Rezultatem mutacji jest wielokrotne powtórzenie sekwencji trójki nukleotydów CAG (kodon oznaczający glutaminę), w obrębie eksonu 1, powodujące powstawanie długich regionów poliglutaminowych (poliQ) na N-końcowym fragmencie białka (14, 15). Im więcej powtórzeń sekwencji CAG w obrębie chromosomu 4, tym wcześniej dochodzi do wystąpienia pierwszych objawów chorobowych i tym cięższy jest jej przebieg kliniczny. Konsekwencją mutacji jest utrata neuronów w obszarach mózgowia, zwanych jądrem ogoniastym i skorupą, wytwarzających neuroprzekaźniki: kwas γ-aminomasłowy (GABA) oraz substancję P. Choroba Huntingtona w równym stopniu dotyczy obu płci.
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
24 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
59 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
119 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 28 zł
Piśmiennictwo
1. Goedert M. Parkinson’s disease and other alpha-synucleinopaties. Clin Chem Lab Med 2001; 39:308-12. 2. Kayser O. Podstawy biotechnologii farmaceutycznej. Wyd UJ, Kraków 2006; 70-1. 3. Szczebara FM, Chandelier C, Villeret C i wsp. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 2003; 21:143-9. 4. Glinka M, Kępka I. Zastosowanie drożdży w kosmetyce. Pol J Cosmetol 2007; 10:156-65. 5. Sato M, Sano H, Iwaki D. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003; 171:417-25. 6. Falandysz J. Selenium in edible mushrooms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2008; 26:256-99. 7. Molski M. Chemia piękna. Wyd Nauk PWN, Warszawa 2009; 273-4. 8. Kayed R, Head E, Thompson JL i wsp. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003; 300:486-9. 9. Rochet JC, Lansbury PT. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 2000; 74:1587-95. 10. Miller-Fleming L, Giorgini F, Outeiro TF. Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 2008; 3:325-38. 11. Wawrzycka D. Drożdże jako model w badaniach chorób neurodegeneracyjnych. Post Hig Med Dośw 2011; 65:325-37. 12. Bocharova N, Chave-Cox R, Sokolov S i wsp. Protein aggregation and neurodegeneration: clues from a yeast model of Huntington’s disease. Biochem (Mosc) 2009; 74:231-4. 13. Walker FO. Huntington’s disease. Lancet 2007; 369:218-28. 14. Rubinsztein DC. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 1996; 59:16-22. 15. Dueannwald ML, Jagadish S, Muchowski PJ i wsp. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci 2006; 103:11045-50. 16. Giorgini F, Guidetti P, Nguyen Q i wsp. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005; 37:526-31. 17. Muchowski PJ, Schaffar G, Sittler A i wsp. Hsp 70 and hsp 40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci 2000; 97:7841-6. 18. Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Nart Acad Sci 2000; 97:1589-94. 19. Dehay B, Bertolotti A. Critical role of the proline-rich region in huntingtin for aggregation and cytotoxicity in yeast. J Biol Chem 2006; 281:35608-15. 20. Drewes G. Marking tau for tangles and toxicity. Trends Biochem Sci 2004; 29:548-55. 21. Gauthier LR, Charring BC, Borrell-Pages M i wsp. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004; 118:127-38. 22. Winzeker EA. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999; 285:901-6. 23. Bharadwaj P, Martins R, Macreadie I. Yeast as a model for studying Alzheimer’s disease. FEMS Yeast Res 2010; 10:961-9. 24. Price JL, Davis PB, Morris JC i wsp. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 1991; 12:295-312. 25. Zhang W, Espinoza D, Hines V i wsp. Characterization of β-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases. Biochim Biophys Acta 1997; 1359:110-22. 26. Lűthi U, Schaerer-Brodbeck C, Tanner S i wsp. Human beta-secretase activity in yeast detected by a novel cellular growth selection system. Biochim Biophys Acta 2003; 1620:167-78. 27. Hughes SR, Goyal S, Sun J E i wsp. Two-hybrid system as a model to study the interaction of β-amyloid peptide monomers. Proc Natl Acad Sci 1996; 93:2065-70. 28. Hardy J, Cai H, Cookson MR i wsp. Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 2006; 60:389-98. 29. Hanato T, Kubo S, Sato S i wsp. Pathogenesis of familial Parkinson’s disease: new insights based on monogenic forms of Parkinson’s disease. J Neurochem 2009; 111:1075-93. 30. Spillantini MG, Crowther RA, Jakes R i wsp. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998; 251:205-8. 31. Volles MJ, Lansbury PT. Relationships between the sequences of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol 2007; 366:1510-22. 32. Dixon C, Mathias N, Zweig RM i wsp. α-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 2005; 170:47-59. 33. Zabrocki P, Pellens K, Vanhelmont T i wsp. Characterization of alpha-synuclein aggregation and synergistic toxicity with the protein tau in yeast. FEBS J 2005; 272:1380-400. 34. Higano CS, Schellhammer PF, Small EJ i wsp. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with Sipuleucel-T in advanced prostate cancer. Cancer 2009; 115:3670-9. 35. Kantoff PW, Schuetz TJ, Blumenstein BA i wsp. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010; 28:1099-105. 36. McAleer WJ, Buynak EB, Maigetter RZ i wsp. Human hepatitis B vaccine from recombinant yeast. Nature 1984; 307:178-80. 37. Schiller JT, Castellsague X, Villa LL i wsp. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine (Suppl 10) 2008; 26:K53-K61. 38. Stanley M. Immunobiology of HPVand HPV vaccines. Gynecol Oncol 2008; 109:S15-S21. 39. Forde K A, Reddy KR. Hepatitis C virus infection and immunomodulatory therapies. Clin Liver Dis 2009;13:391-01. 40. Ardiani A, Higgins JP, Hodge JW. Vaccines based on whole recombinant Saccharomyces cerevisiae Cells FEMS Yeast Res 2010; 10:1060-9. 41. Glinka M, Kępka I. Ocena skuteczności preparatów z suchym ekstraktem drożdży w zabiegach poprawiających wygląd skóry z rozstępami. Pol J Cosmetol 2007; 10(3):199-03.