Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 4/2020, s. 95-99 | DOI: 10.25121/PNM.2020.33.4.95
*Adam Jakubowski1, Sylwia Jablonska1, Grzegorz Lopienski1, Agnieszka Szymanska1, Marzena Wojewodzka-Zelezniakowicz1, Robert Klimkowski1, Klaudiusz Nadolny2, 3, Jerzy Robert Ladny1
Analysis of the effectiveness of noninvasive ventilation techniques in patients with COVID-19
Analiza skuteczności nieinwazyjnych technik wentylacji u pacjentów z COVID-19
1Department of Emergency Medicine, Medical University of Bialystok, Poland
2Faculty of Medicine, Katowice School of Technology, Katowice, Poland
3Department of Health Sciences, WSB University, Dabrowa Gornicza, Poland
Streszczenie
System Opieki Zdrowotnej od końca 2019 roku na całym świecie stanął przed ogromnym wyzwaniem, którym było pojawienie się nowego gatunku koronawirusa zwanego koronawirusem drugiego ciężkiego zespołu oddechowego (SARS-CoV-2) w Wuhan (Chiny). W krótkim czasie patogen ujawnił charakter pandemiczny. 30 stycznia 2019 roku Światowa Organizacja Zdrowia (WHO) ogłosiła wybuch pandemii COVID-19. Największym zagrożeniem zdrowia i życia człowieka jest uszkodzenie płuc, które towarzyszy infekcji wywołanej wirusem, oraz rozwinięcie się ostrej niewydolności oddechowej (ARDS). W trakcie rozwoju epidemii znacząca część bazy łóżkowej szpitali została wypełniona pacjentami wymagającymi tlenoterapii biernej, a w dużej części wspomagania oddechu przy pomocy tlenoterapii wysokoprzepływowej (HFNC) oraz urządzeń generujących ciągłe dodanie ciśnienia w drogach oddechowych (CPAP). Rozmaite techniki stosowania tlenoterapii biernej pozwalają na zastosowanie różnych przepływów tlenu, z proporcjonalnym wzrostem FiO2 w mieszaninie oddechowej.
Summary
Health care system from the end of 2019 faced a huge challenge worldwide which was the emergence of a new species of coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China. Within a short time, the pathogen revealed a pandemic nature. On January 30, 2019, the World Health Organization (WHO) announced the outbreak of the COVID-19 pandemic. The greatest threat to human health and life is the damage to the lungs that accompanies a virus infection and the development of Acute Respiratory Distress Syndrome (ARDS). As the epidemic proceeded, a significant amount of the hospital bed facilities was occupied by patients requiring passive oxygen therapy and, in large part, respiratory support using high flow oxygen therapy (HFNC) and continuous positive airway pressure (CPAP) devices. A variety of techniques for applying passive oxygen therapy allow the use of different oxygen flows, with a proportional increase in FiO2 in the breathing mixture.



Introduction
The ongoing pandemic of the new coronavirus disease COVID-19 poses a serious threat to the world’s human population, particularly in countries with limited health care system efficacy (1). Severe bilateral pneumonia is the main symptom of COVID-19, so adequate ventilatory support is critical for patient survival. Although knowledge about COVID-19 continues to grow, it is still unclear what type of respiratory failure support is the most beneficial. Hypoxemia is crucial in the course of COVID-19, so improving oxygenation is the first and essential step in the treatment of patients with COVID-19 (2, 3). This becomes particularly important in situations of limited capacity for mechanical ventilation due to lack of equipment or medical staff. Oxygen delivery can be increased using non-invasive techniques which are more advanced than the reservoir face mask, such as non-invasive ventilation (NIV) using CPAP masks or helmets, high flow nasal ventilation (HFNC), and the abdominal position called the prone position (4-6).
The presence of hypoxemia itself should not be an indication for endotracheal intubation and mechanical ventilation, as hypoxemia in COVID-19 is often remarkably well tolerated. Exhaustion due to respiratory failure as well as consciousness disturbances and increasing hypercapnia argue for the implementation of invasive mechanical ventilation.
Non-invasive ventilation (NIV) using HFNC, CPAP masks or helmets
Nasal cannulas enable the administration of oxygen at the flow of up to 6 L/min (FiO2 about 45%), various types of face masks allow the use of oxygen flows of 10-20 L/min (FiO2 about 61-99%). However, it should be noted that an increase in oxygen flow increases the risk of contamination of personnel and the environment with pathogens (7). Aerosol dispersion during oxygen therapy using a face mask with a reservoir has been shown to range from 11.2 ± 0.7 to 27.2 ± 1.1 cm (8). The use of non invasive ventilation (NIV) methods results in a similar level of aerosol dispersion e.g. for HFNC 6.5 ± 1.5-17.2 ± 3.3 cm for a flow rate of 10-60 l/min respectively, allowing a much higher arterial blood oxygen saturation to be achieved. This enables their large-scale use in departments treating patients for COVID-19.
In hypoxaemic respiratory failure manifesting as decreased saturation, accelerated and shallow breathing, the essential element of therapy is to increase the oxygen concentration in the respiratory mixture of the patient by expanding the inflamed alveoli, improving ventilation and alveolar perfusion, mechanical, continuous positive airway pressure (CPAP) breathing support and ventilator therapy (9, 10). Most patients with COVID-19 should be ventilator-assisted with the lowest possible effective inspired oxygen concentration (FiO2). The saturation of the patient on ventilatory support should be maintained between 92-96% (11-13).
Non-invasive ventilation allows the patient to be ventilated with positive inspiratory pressure without the need for endotracheal intubation, using face masks, nasal masks, or intranasal cannulas adapted to deliver High Flow Oxygen Therapy (HFOT). When evaluating a patient with a high probability of developing acute respiratory failure, a prompt decision to initiate NIV is crucial. Delaying the decision to use NIV increases the risk of treatment failure (14-16). This method is mainly used by emergency departments and intensive care units. Studies show beneficial effects of this type of ventilation also in internal medicine departments (17). The beneficial effect of non-invasive therapy is possible thanks to the care of the patient by adequately trained medical staff. Analysis of the procedure of NIV use by emergency medical teams in prehospital management indicates a reduction in mortality and a decrease in the risk of patient intubation. A trained member of the emergency medical team, can successfully use CPAP in patients with severe respiratory failure. This is associated with a 30% reduction in intubation rates, and a 21% reduction in mortality in appropriately qualified patients (18-21).
There are some technology solutions available to ensure proper bedside NIV in the emergency department or intensive care setting. CPAP is a therapy that allows the delivery of a breathing mixture under positive pressure that is maintained in the airway throughout the respiratory cycle. The patient independently initiates inspiration through a mask tightly placed on the face, which allows ventilation with oxygen or its mixture with air using positive pressure generated by the device. It leads to the creation of positive pressure in the airways protecting the alveoli from collapsing (22). The ventilator is controlled by setting the end-inspiratory pressure at which the inspiratory phase is terminated. The optimal baseline positive airway pressure (PEEP) should be 5 to 8 cm H2O and FiO2 which should be able to maintain saturation > 90%. PEEP can be increased to 20-25 cm H2O, but special caution must be taken in such cases due to the higher than in other conditions risk of barotrauma.
Another non-invasive respiratory support technique that was widespread during the COVID-19 pandemic is high flow nasal cannula oxygen therapy (HFNC).

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

24

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

59

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
CDC. 2019 Novel Coronavirus, Wuhan, China. CDC. Available at https://www.cdc.gov/coronavirus/2019-ncov/about/index.html. January 26, 2020.
Wu C, Chen X, Cai Y et al.: Risk factors associated with acute respiratory distress syndrome and death in patient with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine 2020; 180: 934-943.
Zhou F, Yu T, Du R et al.: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan. China: A retrospective cohort study. Lancet 2020; 395: 1054-1062.
Matsue Y, Kinugasa Y, Kitai T et al.: Effect of the COVID-19 Pandemic on Acute Respiratory Care of Hypoxemic Patients With Acute Heart Failure in Japan – A Cross-Sectional Study. Circ Rep 2020; 2: 499-506.
Coppo A, Bellani G, Winterton D et al.: Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020; 8: 765-774.
Paul V, Patel S, Royse M et al.: Proning in Non-Intubated (PINI) in Times of COVID-19: Case Series and a Review. J Intensive Care Med 2020; 35: 818-824.
Eames I, Tang JW, Li Y, Wilson P: Airborne transmission of disease in hospitals. J R Soc Interface 2009; 6: S697-S702.
Li J, Fink JB, Ehrmann S: High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. Eur Respir J 2020; 5.
CDC. 2019 Novel Coronavirus, Wuhan, China: Prevention & Treatment. CDC. Available at https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html. January 27, 2020.
Wiersinga WJ, Rhodes A, Cheng AC et al.: Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020; 8: 782-793.
Leung CCH, Joynt GM, Gomersall CD et al.: Comparison of high-flow nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill pneumonia patients: a randomized controlled crossover trial. J Hosp Infect 2019; 101(1): 84-87.
Shenoy N, Luchtel R, Gulani P: Considerations for target oxygen saturation in COVID-19 patients: are we under-shooting? BMC Med 2020; 18(1): 260.
Nielsen Jeschke K, Bonnesen B, Hansen EF et al.: Guideline for the management of COVID-19 patients during hospital admission in a non-intensive care setting. Eur Clin Respir J 2020; 7(1): 1761677.
Nava S, Navalesi P, Conti G: Time of non-invasive ventilation. Intensive Care Med 2006; 32(3): 361-370.
Collaborative Research Group of Noninvasive Mechanical Ventilation for Chronic Obstructive Pulmonary Disease: Early use of non-invasive positive pressure ventilation for acute exacerbations of chronic obstructive pulmonary disease: a multicentre randomized controlled trial. Chin Med J (Engl) 2005; 118(24): 2034-2040.
Ozsancak Ugurlu A, Sidhom SS, Khodabandeh A et al.: Use and outcomes of noninvasive positive pressure ventilation in acute care hospitals in Massachusetts. Chest 2014; 145(5): 964-971.
Cabrini L, Landoni G, Bocchino S et al.: Long-Term Survival Rate in Patients With Acute Respiratory Failure Treated With Noninvasive Ventilation in Ordinary Wards. Crit Care Med 2016; 44(12): 2139-2144.
Thompson J, Petrie DA, Ackroyd-Stolarz S, Bardua DJ: Out-of-hospital continuous positive airway pressure ventilation versus usual care in acute respiratory failure: a randomized controlled trial. Ann Emerg Med 2008; 52(3): 232-241.
Roessler MS, Schmid DS, Michels P et al.: Early out-of-hospital non-invasive ventilation is superior to standard medical treatment in patients with acute respiratory failure: a pilot study. Emerg Med J 2012; 29(5): 409-414.
Mal S, McLeod S, Iansavichene A et al.: Effect of out-of-hospital noninvasive positive-pressure support ventilation in adult patients with severe respiratory distress: a systematic review and meta-analysis. Ann Emerg Med 2014; 63(5): 600-607.
Winck JC, Ambrosino N: COVID-19 pandemic and non invasive respiratory management: Every Goliath needs a David. An evidence based evaluation of problems. Pulmonology 2020; 4: 213-220.
Sawyer AM, Gooneratne NS, Marcus CL et al.: A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions. Sleep Med Rev 2011; 15(6): 343-356.
Marini JJ: How to recruit the injured lung. Minerva Anestesiol 2003; 69(4): 193-200.
Lee HJ, Im JG, Goo JM et al.: Acute lung injury: effects of prone positioning on cephalocaudal distribution of lung inflation – CT assessment in dogs. Radiology 2005; 234(1): 151-161.
Keenan JC, Formenti P, Marini JJ: Lung recruitment in acute respiratory distress syndrome: what is the best strategy? Curr Opin Crit Care 2014; 20(1): 63-68.
Prone Positioning Might Help More COVID-19 Patients - Medscape - Nov 20, 2020.
Mullen L, Byrd D: Using simulation training to improve preoperative patient safety. AORN J 2013; 97: 419-427.
Greenland JR, Michelow MD, Wang L, London MJ: COVID-19 infection: implications for perioperative and critical care physicians. Anesthesiology 2020; 132: 1346-1361.
Guèrin C, Reignier J, Richard JC et al.; PROSEVA Study Group: Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159-2168.
Shuster M, Lim SH, Deakin CD et al.; CPR Techniques and Devices Collaborators: Part 7: CPR techniques and devices: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 2010; 122: S338-S344.
Truhlář A, Deakin CD, Soar J et al.; Cardiac Arrest in Special Circumstances Section Collaborators: European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 2015; 95: 148-201.
Soar J, Maconochie I, Wyckoff MH et al.: 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2019; 145: 95-150.
Edelson DP, Sasson C, Chan PS et al.; American Heart Association ECC Interim COVID Guidance Authors: Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID-19: from the emergency cardiovascular care committee and get with the guidelines-resuscitation adult and pediatric task forces of the American Heart Association. Circulation 2020; 141: e933-e943.
Patel BK, Wolfe KS, MacKenzie EL et al.: One-Year Outcomes in Patients With Acute Respiratory Distress Syndrome Enrolled in a Randomized Clinical Trial of Helmet Versus Facemask Noninvasive Ventilation. Crit Care Med 2018; 46(7): 1078-1084.
Liu Q, Gao Y, Chen R, Cheng Z: Noninvasive ventilation with helmet versus control strategy in patients with acute respiratory failure: a systematic review and meta-analysis of controlled studies. Crit Care 2016; 20: 265.
Patel BK, Wolfe KS, Pohlman AS et al.: Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2016; 315(22): 2435-2441.
Cajander P, Edmark L, Ahlstrand R et al.: Effect of positive end-expiratory pressure on gastric insufflation during induction of anaesthesia when using pressure-controlled ventilation via a face mask: A randomised controlled trial. Eur J Anaesthesiol 2019; 36(9): 625-632.
Ali MJ, Psaltis AJ, Murphy J, Wormald PJ: Endoscopic dacryocystorhinostomy and obstructive sleep apnoea: the effects and outcomes of continuous positive airway pressure therapy. Clin Exp Ophthalmol 2015; 43(5): 405-408.
Soo Hoo GW, Santiago S, Williams AJ: Nasal mechanical ventilation for hypercapnic respiratory failure in chronic obstructive pulmonary disease: determinants of success and failure. Crit Care Med 1994; 22(8): 1253-1261.
Antón A, Güell R, Gómez J et al.: Predicting the result of noninvasive ventilation in severe acute exacerbations of patients with chronic airflow limitation. Chest 2000; 117(3): 828-833.
Antonelli M, Conti G, Moro ML et al.: Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 2001; 27(11): 1718-1728.
Esteban A, Anzueto A, Frutos F et al.; Mechanical Ventilation International Study Group: Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002; 28(3): 345-355.
Cook DT, Dahlhausen CM, Draper KR, Hilton LR: Pneumoperitoneum and PEG Dislodgement Secondary to Noninvasive Ventilation after PEG Tube Placement. Am Surg 2019; 85(11): 1308-1309.
Confalonieri M, Gazzaniga P, Gandola L et al.: Haemodynamic response during initiation of non-invasive positive pressure ventilation in COPD patients with acute ventilatory failure. Respir Med 1998; 92(2): 331-337.
Muriel A, Peñuelas O, Frutos-Vivar F et al.: Impact of sedation and analgesia during noninvasive positive pressure ventilation on outcome: a marginal structural model causal analysis. Intensive Care Med 2015; 41(9): 1586-1600.
otrzymano: 2020-10-05
zaakceptowano do druku: 2020-10-26

Adres do korespondencji:
*Adam Jakubowski
Department of Emergency Medicine, Medical University of Bialystok
ul. Szpitalna 37, 15-295 Bialystok, Poland
socialjkb@icloud.com

Postępy Nauk Medycznych 4/2020
Strona internetowa czasopisma Postępy Nauk Medycznych