Ludzkie koronawirusy - autor: Krzysztof Pyrć z Zakładu Mikrobiologii, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Kraków

Zastanawiasz się, jak wydać pracę doktorską, habilitacyjną lub monografię? Chcesz dokonać zmian w stylistyce i interpunkcji tekstu naukowego? Nic prostszego! Zaufaj Wydawnictwu Borgis – wydawcy renomowanych książek i czasopism medycznych. Zapewniamy przede wszystkim profesjonalne wsparcie w przygotowaniu pracy, opracowanie dokumentacji oraz druk pracy doktorskiej, magisterskiej, habilitacyjnej. Dzięki nam nie będziesz musiał zajmować się projektowaniem okładki oraz typografią książki.

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Medycyna Rodzinna 3/2018, s. 267-280 | DOI: 10.25121/MR.2018.21.3.267
Ewa Krakowiak, Jolanta Cembrzyńska
Contemporary possibilities of reducing health damage caused by particulate matter air pollution
Współczesne możliwości redukcji szkód zdrowotnych wywołanych pyłowymi zanieczyszczeniami powietrza atmosferycznego
Zakład Szkodliwości Biologicznych i Immunoalergologii, Instytut Medycyny Pracy i Zdrowia Środowiskowego, Sosnowiec
Streszczenie
Pyłowe zanieczyszczenia powietrza atmosferycznego należą do globalnych zagrożeń środowiska i są uznawane przez Światową Organizację Zdrowia (WHO) za bezpośrednią przyczynę pogorszenia zdrowia i warunków życia ludzi. W Polsce zanieczyszczenie powietrza atmosferycznego wielokrotnie w ciągu roku przekracza poziomy związane z ryzykiem wystąpienia ostrych i przewlekłych problemów zdrowotnych. W celu ochrony zdrowia społeczeństwa niezbędna jest poprawa jakości powietrza poprzez wyeliminowanie lub ograniczenie emisji substancji zanieczyszczających do poziomów dopuszczalnych. Indywidualne narażenie na pyłowe zanieczyszczenia powietrza atmosferycznego, zwłaszcza w okresach epizodów wysokich stężeń, można ograniczać podejmując odpowiednie działania, do których należą: pozostawanie w pomieszczeniach zamkniętych, zmniejszenie przenikania powietrza atmosferycznego do pomieszczeń, ograniczanie wysiłku fizycznego na zewnątrz, szczególnie w pobliżu źródeł emisji zanieczyszczeń. Rosnąca liczba publicznych systemów ostrzegania o jakości powietrza ułatwia zwiększenie świadomości o zagrożeniu. Unikanie ekspozycji na zanieczyszczenia powietrza atmosferycznego jest szczególnie ważne w przypadku populacji wrażliwej. Należy kontynuować badania mechanizmów leżących u podstaw redukcji negatywnego wpływu zanieczyszczenia powietrza na zdrowie poprzez suplementowanie witamin, antyoksydantów czy odpowiednio skomponowaną dietę, a także stosowanie środków ochrony indywidualnej (półmaski filtrujące) w celu opracowania odpowiednich zaleceń dla populacji wrażliwej i generalnej. Istotne jest wypracowanie właściwych strategii dostosowanych indywidualnie i mających wpływ na redukcję szkód związanych z pyłowym zanieczyszczeniem powietrza atmosferycznego jednocześnie bez zaniechania zdrowej aktywności fizycznej. Działania podejmowane indywidualnie przez każdego człowieka muszą być dla niego bezpieczne i przynosić odpowiednie korzyści zdrowotne.
Summary
Particulate matter air pollution is one of global environmental threats and is considered by the World Health Organisation (WHO) to be a direct cause of deteriorated health and living conditions. In Poland, air pollution exceeds the levels associated with the risk of acute and chronic health conditions many times a year. In order to protect public health, it is necessary to improve air quality by eliminating or reducing the emission of pollutants to acceptable levels. Individual exposure to particulate air pollution, especially during the periods of high concentrations, may be limited by taking appropriate measures such as staying indoors with windows closed, reducing the inflow of outdoor air, limiting outdoor exercise, especially near the sources of emissions. The growing number of public air quality alert systems helps raise awareness of the risk. Avoiding exposure to air pollution is particularly important for sensitive populations. Studies should be continued to investigate the mechanisms underlying the reduction of negative effects of air pollution on health by vitamin/antioxidant supplementation or balanced diet, as well as by using personal protective equipment (filter half masks) to develop appropriate guidelines for both the sensitive and general population. It is important to develop appropriate, individually tailored strategies for reducing harm related to particulate matter air pollution without abandoning healthy physical activity. Action taken individually by each person must be safe and bring appropriate health benefits.
Słowa kluczowe: pył zawieszony, narażenie środowiskowe, zachowania prozdrowotne, redukcja szkód
Introduction
Particulate matter (PM) air pollution is a result of introducing solid, liquid or gaseous substances, which may remain in the atmosphere for a certain period of time, into the air. The chemical composition of particulate matter depends on its source. Natural (e.g. volcanoes, deserts, forest fires, soil and rock erosion, cosmic dust), and anthropogenic (resulting from human activity) sources may be distinguished. These may be pollutants introduced from energy and technological sources in an organised manner through an emitter (a chimney with a height of more than 40 m), being a point source of emissions, as well as from mobile sources associated with transportation and communication routes – motor vehicle emission (1).
The characteristics of particulate matter air pollution in Poland
In Poland, air quality is significantly affected by surface emission related to heating in the communal and living sector (single- and multi-family buildings, public buildings, service and trade buildings), which accounts for the so-called low emission, responsible for smog formation. The term low emission is also understood as communication and transportation-related, as well as unorganised emissions, i.e. generated by fires, field work, and dust from landfills or industrial accidents. Smog is an unnatural atmospheric phenomenon caused by anthropogenic air pollution in the presence of natural atmospheric phenomena, such as temperature inversion during windless weather, particularly in low lying areas. Air pollution is characterised by seasonal differences in its levels and composition. The smog observed in the heating season (from October to March) is typical of low emission, whereas the summer-time photochemical smog is mainly due to communication and transportation pollution. The levels and composition of air pollutants also change during the day. These changes occur as a result of, e.g. hours of heavy traffic, sunlight-dependent photochemical fluctuations, atmospheric conditions or hours of more intense heating of buildings (2, 3).
Emission of pollutants formed during incomplete combustion of fuel, often of poor quality, in old-type household furnaces is a serious problem in Poland. It causes a release of harmful substances, such as benzo(a)pyrene and other polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), as well as heavy metals (4, 5).
A classification according to aerodynamic diameter of particles is used for health risk assessment for particulate matter. The classification distinguishes two main particle fractions: PM10 (coarse particles) with aerodynamic diameter of less than 10 μm and PM2.5 (fine particles) with aerodynamic diameter of less than 2.5 μm (2). Fine particles include carcinogenic, mutagenic and cytotoxic compounds. In 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution, including the particulate matter (PM), as carcinogenic to humans (Group 1) (6, 7).
Air quality is improving in most European countries. However, about 80% of the population lives in environments where the PM levels recommended in the WHO guidelines on particulate matter (Air Quality Guidelines – AQG), which are more strict than the limit and target levels set out in the EU law, are exceeded (8). According to latest research in 28 EU countries, about 53 and 82% of residents are exposed to increased PM10 and PM2.5, respectively, with the worst results recorded, among others, in Poland (9).
The effects of particulate matter air pollution on health
Epidemiological and clinical studies clearly demonstrate that there is a relationship between environmental exposure (short- or long-term) to particulate matter and the risk of adverse health consequences. These are due to human exposure to air pollution in different periods of life, from the prenatal period, through childhood to adult life. Air pollution is responsible for, among other things, the risk of premature death, especially due to cardiovascular diseases (e.g. myocardial infarction, ischaemic stroke or sudden cardiac arrest), as well as acute respiratory infections and lung cancer. Particulate matter affects fertility, pregnancy, as well as the development of newborns and children. Children of mothers exposed to increased levels of particulate matter air pollution present with lower birth weight and respiratory symptoms. There is a negative impact of air pollution on the development of neurons and cognitive abilities of a child, which in the future may lead to intelligence deficits, learning problems and, as a result, lower productivity and quality of life in adulthood. Scientific studies have linked the exposure to air pollution to type 2 diabetes mellitus in adults, as well as obesity, Alzheimer’s disease, dementia, premature ageing and depression. There is a significant increase in the number of patients reporting to healthcare institutions due to asthma exacerbation, allergies, chronic obstructive pulmonary disease (COPD) or atrial fibrillation (2, 10, 11).
The so-called sensitive population, which includes children and adolescents, pregnant women, the elderly and patients with respiratory or cardiovascular diseases (e.g. asthma, atherosclerosis, congestive heart failure) is at particular risk of adverse health consequences associated with air pollution. The inclusion of children in the sensitive population is based on the possible inhalation of higher doses of particulate matter per body mass, immature detoxification mechanisms, as well as still-developing internal organs. For other members of this risk group, the increased susceptibility to air pollution is due to chronic diseases, age or other factors contributing to reduced immunity (2, 10).
Globally, air pollution is the sixth leading risk factor for premature death and disability. It was shown in 2015 that air pollution contributed to more than 4 million total deaths, and 103 million lost years of healthy life (12). In Poland in 2016, more than 24,000 people died due to environmental exposure to air pollution. The main causes of death included cardiovascular diseases (death rate/100,000 inhabitants: 48.18), cancer (death rate/100,000 inhabitants: 8.79), and respiratory diseases (death rate/100,000 inhabitants: 5.71). Cardiovascular and respiratory symptoms were the main contributors to reduced quality of life due to short- or long-term disability (13).
Methods for the reduction of health-related harm due to particulate matter air pollution
Various strategic, legislative, information, technical, control and financial activities at national, regional and local levels are currently taking place in Europe, aiming to reduce human exposure to air pollution. In Poland, the most important action in the context of air and health protection is to reduce emissions of air pollutants in a manner allowing for effective improvement of air quality and compliance with the standards set by the law. Nevertheless, each person exposed to increased concentrations of particulate matter should themselves take measures to reduce the risk of potentially negative health effects. The development of appropriate strategies and recommendations for a society exposed to particulate matter air pollution is a very difficult and complex task due to the different levels of individual sensitivity and the heterogeneous chemical composition of particulates and their impact on human health. The knowledge on the levels of air pollution is the key to taking effective individual preventive actions. The basic strategy of harm reduction is to develop a habit of checking air quality using tools adapted for this purpose and, depending on the findings, to take appropriate preventive measures.
Air quality diagnostic tools
Tools for rapid air quality diagnosis that allow for linking the results with the level of public health risk are one of the elements in the process of reducing negative health outcomes due to human exposure to air pollution. In Poland, such actions result from the transposition of the decisions of the Directive of the European Parliament and of the Council on ambient air quality and cleaner air for Europe, the provisions of which require that such information on ambient air quality is made available to the public (14). In 2008, the European Environment Agency (EEA) in cooperation with the European Commission implemented the Air Quality Index to compare air quality in different European cities and regions. The possibility to quickly assess the level of public health risk due to daily concentration of air pollutants was one of the main reasons for the development of such tools (15). The assessment of ambient air quality allows for immediate action to be taken in response to the risk of exceeding information threshold or alert threshold, even a short-term increase of which may pose a risk to human health (16).
Considering the local specificity of environmental conditions and the persistent high concentrations of particulate matter and gaseous pollutants, the Polish Air Quality Index, which is a modification of the version recommended by the EEA, is used in Poland for the assessment of air quality. In addition to particulate matter (PM10 and PM2.5), the algorithm for determining the index categories also takes into account the concentrations of the main gaseous pollutants, such as sulphur dioxide, ozone, nitrogen oxide, carbon monoxide and benzene, with the index category being determined based on the concentration of the dominant pollutant in a given area. Air quality is classified based on six indices that correlate with the level of health risk and physical activity recommended for the general and sensitive population (tab. 1). These health risk levels are only general guidelines to make people aware of how to plan physical activity to limit the negative effects of air pollution on health. The index classes defined as ‘very good’ and ’good’ correspond to predefined acceptable levels for pollutants and good air quality with no potential to affect health. Moderate AQI means air quality that may initiate adverse health effects in the sensitive population. Increased levels of particulate and gaseous pollutants significantly reduce air quality (indices: rather poor, poor, very poor), which may increase negative health effects even in the case of short-term exposure (17).
Tab. 1. Polish Air Quality Index – health risk levels and recommended actions (17)
Air Quality IndexAir QualityHealth risk level
General populationSensitive population*
Very goodVery goodexcellent conditions for all kinds of outdoor activities;
the level of air pollution poses no health threat
GoodSatisfactoryyou can stay outdoors and do your usual physical activity without limitations;
no or very low health risk
ModerateAcceptablemoderate conditions for outdoor physical activity
 health risk
Rather poorRather poorconsider reducing or rescheduling activities outdoors, particularly long or strenuous ones
 health risk
PoorPoorreduce to a minimum any outdoor activity, particularly long or strenuous onesavoid staying outdoors; health risk
Very poorVery poor.reduce to a necessary minimum any outdoor activity, particularly long or strenuous onesavoid staying outdoors; health risk
*Groups sensitive to particulate matter air pollution include, among others, children and adolescents, patients with asthma and other respiratory diseases (e.g. chronic obstructive pulmonary disease), heart failure, and elderly people (over 65 years of age)

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 30 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

Piśmiennictwo
1. World Health Organization: Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005. Summary of risk assessment. WHO Geneva 2006.
2. World Health Organization: Health risks of particulate matter from long-range transboundary air pollution. WHO Regional Office for Europe, Copenhagen 2006.
3. Cembrzyńska J, Krakowiak E, Brewczyński PZ: Sezonowa zmienność stężenia pyłu zawieszonego oraz jakości powietrza na terenie miasta Sosnowiec. Med Srod 2015; 18(4): 27-35.
4. Cembrzyńska J, Krakowiak E, Brewczyński PZ: Zanieczyszczenie powietrza pyłem zawieszonym PM10 oraz PM2,5 w warunkach silnej antropopresji na przykładzie miasta Sosnowiec. Med Srod 2012; 15(4): 31-38.
5. Junninen H, Mønster J, Rey M et al.: Quantifying the Impact of Residential Heating on the Urban Air Quality in a Typical European Coal Combustion Region. Environ Sci Technol 2009; 43(20): 7964-7970.
6. Loomis D, Grosse Y, Lauby-Secretan B et al.: The carcinogenicity of outdoor air pollution. Lancet Oncology 2013; 14: 1262-1263.
7. International Agency For Research On Cancer: A Review of Human Carcinogens. Chemical Agents and Related Occupations: Bezno(a)pyrene. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon 2012; 110F: 111-138.
8. European Environmental Agency: European Union Emission Inventory Report 1990-2013 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). EEA, Copenhagen 2015.
9. European Environmental Agency: Air Quality in Europe-2017 EEA Report. EEA 2017; DOI: 10.2800/850018.
10. World Health Organization: Review of evidence on health aspects of air pollution – REVIHAAP project: final technical report. WHO 2013.
11. World Health Organization: Ambient air pollution: A global assessment of exposure and burden of disease. WHO 2016.
12. Forouzanfar MH, Afshin A, Alexander LT et al.: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659-1724.
13. The Institute for Health Metrics and Evaluation (IHME): Global Burden of Disease (GBD) 2018; https://vizhub.healthdata.org/gbd-compare/.
14. Dyrektywa Parlamentu Europejskiego i Rady 2008/50/WE z dnia 21 maja 2008 r. w sprawie jakości powietrza i czystszego powietrza dla Europy (Dz. Urz. UE L152/2008).
15. van den Elshout S, Lèger K, Nussio F: Comparing urban air quality in Europe in real time a review of existing air quality indices and the proposal of a common alternative. Environ Int 2008; 34(5): 720-726.
16. Rozporządzenie Ministra Środowiska z dnia 24 sierpnia 2012 r. w sprawie poziomów niektórych substancji w powietrzu (Dz. U. 2012.1031).
17. Główny Inspektorat Ochrony Środowiska: Polski Indeks Jakości Powietrza; http://powietrze.gios.gov.pl/pjp/current.
18. Gulia S, Nagendra SMS, Khare M, Khanna I: Urban air quality management – a review. Atmospheric Pollution Research 2015; 6(2): 286-304.
19. Meng QY, Spector D, Colome S et al.: Determinants of Indoor and Personal Exposure to PM(2.5) of Indoor and Outdoor Origin during the RIOPA Study. Atmos Environ 2009; 43: 5750-5758.
20. Lin LY, Chuang HC, Liu IJ et al.: Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population. Sci Total Environ 2013; 463-464: 176-181.
21. Laumbach R, Meng Q, Kipen H: What can individuals do to reduce personal health risks from air pollution? J Thorac Dis 2015; 7(1): 96-107.
22. Raza W, Forsberg B, Johansson Ch, Sommar JN: Air pollution as a risk factor in health impact assessments of a travel mode shift towards cycling. Glob Health Action 2018; 11(1). DOI: 10.1080/16549716.2018.1429081.
23. Tainio M, de Nazelle AJ, Götschi T et al.: Can air pollution negate the health benefits of cycling and walking? Prev Med 2016; 87: 233-236.
24. Zuurbier M, Hoek G, Oldenwening M et al.: Commuters exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 2010; 118: 783-789.
25. HEI Panel on the Health Effects of Traffic-Related Air Pollution: Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. HEI Special Report 17. Health Effects Institute, Boston 2010.
26. Bennett WD, Zeman KL, Jarabek AM: Nasal contribution to breathing and fine particle deposition in children versus adults. J Toxicol Environ Health A 2008; 71: 227-237.
27. Chaney RA, Sloan ChD, Cooper VC et al.: Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway. PLoS One 2017; 12(11). DOI: 10.1371/journal.pone.0188053.
28. Haryanto B, Suksmasari T, Wintergerst E, Maggini S: Multivitamin Supplementation Supports Immune Function and Ameliorates Conditions Triggered By Reduced Air Quality. Vitam Miner 2015; 4. DOI: 10.4172/2376-1318.1000128.
29. Poljsak B, Fink R: The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxid Med Cell Longev 2014; 2014: 671539.
30. Whyand T, Hurst JR, Beckles M, Caplin ME: Pollution and respiratory disease: can diet or supplements help? A review. Respir Res 2018; 19(1): 79.
31. Barrea L, Savastano S, Di Somma C et al.: Low serum vitamin D-status, air pollution and obesity: A dangerous liaison. Rev Endocr Metab Disord 2017; 18(2): 207-214.
32. Peter S, Holguin F, Wood LG et al.: Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution. Nutrients 2015; 7(12): 10398-10416.
33. Hoffman JB, Hennig B: Protective influence of healthful nutrition on mechanisms of environmental pollutant toxicity and disease risks. Ann N Y Acad Sci 2017; 1398(1): 99-107.
34. Zhong, J, Trevisi L, Urch B et al.: B-vitamin Supplementation Mitigates Effects of Fine Particles on Cardiac Autonomic Dysfunction and Inflammation: A Pilot Human Intervention Trial. Sci Rep 2017; 7: 45322.
35. Mishra S: Is smog innocuous? Air pollution and cardiovascular disease. Indian Heart Journal 2017; 69(4): 425-429.
36. Jiang XQ, Mei XD, Feng D: Air pollution and chronic airway diseases: what should people know and do? J Thorac Dis 2016; 8(1): E31-40.
37. Shi J, Lin Z, Chen R et al.: Cardiovascular benefits of wearing particulate-filtering respirators: a randomized crossover trial. Environ Health Perspect 2017; 125: 175-180.
38. Rozporządzenie Ministra Gospodarki z dnia 21 grudnia 2005 r. w sprawie zasadniczych wymagań dla środków ochrony indywidualnej. Dz. U. Nr 259, poz. 2173.
39. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 765/2008 z dnia 9 lipca 2008 r. ustanawiające wymagania w zakresie akredytacji i nadzoru rynku odnoszące się do warunków wprowadzania produktów do obrotu i uchylające rozporządzenie (EWG) nr 339/93. Dz. Urz. UE L218/2008.
40. Rengasamy S, Eimer BC, Shaffer RE: Comparison of Nanoparticle Filtration Performance of NIOSH-approved and CE-Marked Particulate Filtering Facepiece Respirators. Ann Occup Hyg 2009; 539(2): 117-128.
41. Urząd Ochrony Konkurencji i Konsumentów: Półmaski filtrujące. Poradnik dla konsumentów. Warszawa 2018; https://www.uokik.gov.pl/aktualnosci.php?news_id=13984.
42. Cherrie JW, Apsley A, Cowie H et al.: Effectiveness of face masks used to protect Beijing residents against particulate air pollution. Occup Environ Med 2018; 75(6): 446-452.
43. Langrish JP, Li X, Wang S et al.: Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ Health Perspect 2012; 120: 367-372.
44. Holmèr I, Kuklane K, Gao Ch: Minute Volumes and Inspiratory Flow Rates During Exhaustive Treadmill Walking Using Respirators. Ann Occup Hyg 2007; 51(3): 327-335.
otrzymano: 2018-07-17
zaakceptowano do druku: 2018-08-07

Adres do korespondencji:
Ewa Krakowiak
Zakład Szkodliwości Biologicznych i Immunoalergologii Instytut Medycyny Pracy i Zdrowia Środowiskowego
ul. Kościelna 13, 41-200 Sosnowiec
tel.: +48 793-320-350
ewa.krakowiak@gmail.com

Medycyna Rodzinna 3/2018
Strona internetowa czasopisma Medycyna Rodzinna