*Labib Zair1, Jędrzej Skrobot2, Mariola Marchlewicz3, Jarosław Lichota1, Leonard Gugała4, Magdalena Kuczyńska5, Samir Zeair6, Ewa Duchnik7, Karol Tejchman1, Barbara Wiszniewska8, Jerzy Sieńko1, Tadeusz Sulikowski1, Marek Ostrowski1, Mirosława El Fray2
Abdominal hernia repair surgery with the new injectable polymer biomaterials
1Clinic of General and Transplantation Surgery, Pomeranian Medical University, Szczecin
Head of Clinic: prof. Marek Ostrowski, MD, PhD
2Division of Biomaterials and Microbiological Technologies, West Pomeranian University of Technology, Szczecin
Head of Division: Mirosława El Fray
3Department of Aesthetic Dermatology, Pomeranian Medical University, Szczecin
Head of Department: prof. Mariola Marchlewicz, MD, PhD
4Veterinary Clinic, Szczecin
Head of Clinic: Leonard Gugała
5Independent Longterm Care Unit, Pomeranian Medical University, Szczecin
Head of Unit: Bożena Mroczek, MD, PhD
6Clinic of General, Vascular and Transplantation Surgery, Maria Skłodowska-Curie Hospital, Szczecin
Head of Clinic: Samir Zaeir
7Department of Dermatology and Venereology, Pomeranian Medical Univeristy, Szczecin
Head of Department: prof. Romuald Maleszka, MD, PhD
8Department of Histology and Embryology, Pomeranian Medical Univeristy, Szczecin
Head of Department: prof. Barbara Wiszniewska, MD, PhD
Summary
Introduction. The new injectable polymer biomaterials offer a completely innovative approach to hernia repair surgery. This study evaluated the potential application of injectable polymer biomaterials in hernia treatment using an animal model. Local connective tissue reactions associated with the new injectable polymer biomaterials were compared with the reactions provoked by commercial polypropylene mesh.
Aim. Evaluation of the potential application of injectable polymer biomaterials in the treatment of abdominal wall hernias using an animal model.
Material and methods. Five groups of rabbits with previously-created hernias were treated with new biomaterials injected in nonpolymerized form into hernial openings. The same animals had previously polymerized discs surgically implanted in the dorsal subcutaneous area. The rabbits were kept under clinical observation for 28 days, then sacrificed under anesthesia. Samples of subcutaneous tissue were taken from the hernia region and from the vicinity of the polymerized biomaterial discs implanted in the dorsal area for histological examination.
Results. In groups 1, 2 and 3, hernia treatment results, laboratory tests and histological examination of the tissues previously taken from the operated hernia sites were similar to the results obtained in the control group. In groups 1, 2 and 3, the numbers of fibrocytes and neutrophils in the vicinity of the subcutaneously-implanted discs in the dorsal area were similar to those in the hernial region treated with mesh in the control group.
Conclusions. Biomaterials 188-UR/PEG-DA 85/15, P1838-DMA and 1838_UR can be used in animals in the near future as possible abdominal wall hernia treatments. These biomaterials were as efficient as the polypropylene mesh used in the control group for treating abdominal wall hernias.

INTRODUCTION
Hernia repair represents a considerable proportion of the operations performed in general surgery. The number of specific operations reflects hernia incidence in the general population; typically, approximately 80% of repairs are inguinal, 10% incisional, 5% femoral, 4% umbilical, and < 1% represent other types of repairs. Surgical efforts are directed towards increasing efficacy, which, particularly in hernia surgery, converts into safety, lowering complication rates, shortening the length of the hospital stay, and lowering the recurrence rate. These goals are achieved by improvements in surgical procedures, the materials used, and general perioperative care (i.e., minimally invasive surgery with laparoscopy as its major part, tension-free procedures, adequate prophylaxis and the use of certain artificial materials in recreating abdominal wall integrity).
Our interest is directed on biomaterials. Currently, the most common is polypropylene mesh, and Lichtenstein’s inguinal hernia repair remains a gold standard technique. However, in our study, we decided to examine the use of liquid, photoinduced stiffening polymers, such as 1838-DMA, P1838-UR, PDEGA-UR and PEG-DA, in an experimental model of rabbits with artificially induced hernias.
AIM
1. To evaluate the potential application of injectable polymer biomaterials in the treatment of abdominal wall hernias using an animal model.
2. To compare tissue reactions elicited by the new polymer biomaterials and a commercial polypropylene mesh.
3. To determine the influence of the new injectable biomaterials on the kidneys and liver.
MATERIAL AND METHODS
The study group consisted of 20 New Zealand rabbits; there were 10 males and 10 females, with an average weight of 2.5 ± 0.6 kg. During stage 1 (tab. 1), we surgically created abdominal wall hernias in the group of rabbits. First, we established access to the jugular or femoral vein for blood sample collection. General anesthesia was induced by the intravenous administration of Domitor (0.2 ml IV) and ketamine (20 mg [0.2 ml] IV; Orion Pharma). After shaving the fur and disinfecting the skin, a ventral midline incision was made below the navel; the 5-cm incision went through the skin, subcutaneous tissue, fascia and muscle flap, uncovering the peritoneum. Afterward, the skin was closed by primary, continuous suture. The rabbits were observed for 30 days, allowing wound healing and hernias to occur.
Table 1. Study schedule.
| Procedures | Time |
Stage I | General anaesthesia Laboratory examination Weight prior to surgery Creation of hernia | 30 days between first and second surgery Everyday clinical observation Motor activity Wound healing Nutrition |
Stage II | General anaesthesia Laboratory examination Weight prior to surgery Hernia repair surgery | 28 days between second operation and autopsy Everyday clinical observation Motor activity Wound healing Nutrition |
Stage III | General anaesthesia Laboratory examination Weight prior to dissection Autopsy Histological examination | Clinical observation of the location of treated hernia from exterior and from the side of abdominal cavity |
During stage 2 (tab. 1), the rabbits were randomized into five groups of four rabbits each for treatment with the following polymers: group 1 – P1838-UR/PEG-DA 85/15; group 2 – P1838-DMA; group 3 – P1838-UR, 4; group 4 – PDEGA-UR, and group 5 – control group, standard polypropylene mesh. Hernia repair surgery was performed under general anesthesia as described above. Blood samples for laboratory examination were collected from the jugular or femoral vein. The surgical field was shaved and disinfected, and the skin and subcutaneous tissue were incised over the hernial sac (fig. 1-3). The dissected sac was discharged into the abdominal cavity, and the appropriate polymer biomaterial was introduced into the hernial defect. The amount of biomaterial used per application varied from 1-2 cm3. Groups 1-4 received 5 minutes of irradiation with a UV lamp, which turned the liquid into an elastic, porous sponge (fig. 4 and 5). The subcutaneous and cutaneous tissues were closed using a continuous suture. In group 5, the mesh was not exposed to UV irradiation, and it was not fixed with sutures. After hernia repair, the rabbits were kept under clinical observation for 28 days.

Fig. 1. Hernia sack opened.

Fig. 2. Hernia sack during preparation.

Fig. 3. Hernia sack with contents.

Fig. 4. Hernia with biomaterial inserted.

Fig. 5. Groups 1-4 received 5 minutes of irradiation with a UV lamp, which turned the liquid into an elastic, porous sponge.
During stage 3 (tab. 1), the rabbits were sacrificed using 3 ml (480 mg) of Morbital while under anesthesia (medetomidine plus ketamine; Orion Pharma). Postmortem samples were collected from the tissues surrounding the hernia repair site and from the kidneys and the liver.
The biomaterials used in the current study were synthetized from fatty acids present in plant oils. Depending on the type and variety of the material, up to 80% of its mass was derived from renewable sources. The materials 1838-DMA and P1838-UR contain a fatty acid core. PDEGA-UR is a derivative of poly[di(ethylene glycol) adipate], and PEG-DA is diacrylated poly(ethylene glycol) (fig. 6). All of the materials had (meth)acrylic end-groups, making them susceptible to polymerization with UV light. The compositions used for hernia repair also contained the photoinitiator Irgacure 819 (Ciba). The polymers we-re synthesized under mild conditions. The process was carried out in an organic solvent under normal pressure and in the temperature range of 0 to 40°C (1). These biomaterials were created specifically for this project and have not yet been tested in other applications.

Fig. 6. Biochemical structure.
All rabbits were under the constant supervision of a veterinary surgeon. During the study, the following were recorded: vital signs, weight, food consumption, motor activity, the presence of swelling and redness around the wound, and the presence of fluid under the scar. Wound control included observation of both the external side and the peritoneal side of the treated hernia for assessment of hernia relapse. Blood was collected at every stage to measure aspartate transaminase (AST), gamma-glutamyl transferase (GGTP) activity and creatinine concentration.
Samples for histologic evaluation were preserved in freshly prepared 4% paraformaldehyde and then embedded in paraffin. For the purposes of morphological analysis, a slide series was made at 3-5 μm intervals, and the tissues were stained using hematoxylin and eosin. The cross-sections were dyed with the intent of calculating the numbers of various types of cells (fibrocytes, neutrophils, eosinophils, lymphocytes, macrophages). A 10 × eyepiece with a square visor was used for examination. For each animal’s tissue samples, the number of cells was calculated from 50 randomly selected fields; this evaluation was performed using 40 × augmentation and a Zeiss brand microscope. The surface area of each square was 1225 μm2 in size (35 × 35 mm) within the framework of the target. All morphometric measurements were obtained using AxioVision Relative software, version 4.6 (Zeiss, Axioscop, Germany).
Statistical analysis was performed with the Statistica 10 software package; the Shapiro-Wilk and Mann-Whitney tests were used for comparisons, with the level of significance set at p < 0.05. The study was conducted after obtaining the consent of the bioethics committee.
RESULTS
This study provided data drawn from: (1) clinical observation of the rabbits; (2) biochemistry tests; (3) histopathologic evaluation of the kidneys and liver; and (4) histopathologic evaluation of the tissues surrounding the hernia. There were no differences between the groups in motor activity, daily food intake or average weight gain. Would healing was undisturbed in groups 1, 2, 3 and 5, while wound inflammation was observed in group 4. Two deaths, caused by pneumonia and hernia incarceration, were observed during stage 1.
Biochemical tests
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
19 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
49 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
119 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 28 zł
Piśmiennictwo
1. El Fray M, Skrobot J, Bolikal D, Kohn J: Synthesis and characterization of telechelic macromers containing fatty acid derivatives. React & Funct Polym 2012; 72(9): 781. 2. Primatesta P, Goldacre MJ: Inguinal hernia repair. Incidence of elective and emergency surgery, readmission and mortality. Int J Epidemiol 1996; 25: 835-839. 3. Witkowski P: Surgical treatment of inguinal hernia. Bassini and Rudkow methods, prospective randomized study. Akademia Medyczna, Gdańsk 1999. 4. Haapaniemi S, Gunnarsson U, Nordin P et al.: Reoperation after recurrent groin hernia repair. Ann Surg 2001; 234: 122-126. 5. Chróścicki S, Falkowski W: Results of hernia treatment with biomaterials. Pol Przeg Chir 1969; 10: 1356-1358. 6. Hair A, Peterson C, Wright D et al.: What effects does the duration of an inguinal hernia have on patient symptoms? Jam Coll Surg 2001; 193: 125-129. 7. Bay-Nielsen M, Nordin P, Nillson E et al.: Operative findings in recurrent henia after a Lichtenstein procedure. Am J Surg 2001; 182: 134-136. 8. Maggiore D, Muller G, Hafanaki J: Bassini vs Lichtenstein: two basic techniques for inguinal hernia treatment. Hernia 2001; 5: 21-24. 9. Fleming WR, Elliott TB, Jones RM et al.: Randomized clinical trial comparing totally extraperitoneal inguinal hernia repair with the Shouldice technique. Br J Surg 2001; 88: 1183-1188. 10. Lichtenstein IL, Schulman AG, Amid PK, Montllor MM: Cause and prevention of postherniorrhaphy neuralgia: protocol for treatment. Am J Surg 1988; 155: 786-790. 11. Rychlewski D, Wojczys R: Pain after inguinal hernia repair. Chirurgia Polska 2007; 9(3): 180-185. 12. Luijendijk RW, Hop WC, van den Tol MP et al.: A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med 2000; 343: 392-398. 13. Pasieka Z: Comparison of early and long-term results of inguinal hernia repairs with selected surgical techniques. Chirurgia Polska 2004; 6(1): 19-25. 14. Bobrzyński A, Budziński A, Rembiasz K: Laparoscopy in abdominals hernias treatment. Przegląd lek 2001; 58: 45-50. 15. Katkhouda N, Mavor E, Friedlaner MH et al.: Use of fibrin sealant for prosthetic mesh fixation in laparoscopic extraperitoneal inguinal hernia repair. Ann Surg 2001; 233: 18-25. 16. El Fray M, Zair L, Skrobot J: Application of composition containing telechelic macromer and photoinitiator for producing implant for hernia repair. Pending U.S. Patent Application No. 13/727,876 (2012).