© Borgis - Postępy Nauk Medycznych 11/2015, s. 766-771
Łukasz Obrycki, Jędrzej Sarnecki, Anna Niemirska, *Mieczysław Litwin
Ocena centralnego ciśnienia tętniczego jako predyktora uszkodzenia narządowego u dzieci z pierwotnym nadciśnieniem tętniczym
Assessment of central blood pressure as a predictor of target organ damage in children with primary hypertension**
Department of Nephrology and Arterial Hypertension, The Children’s Memorial Health Institute, Warszawa
Streszczenie
Wstęp. Centralne skurczowe ciśnienie tętnicze (cSBP) uważane jest za najlepszy wskaźnik oceny ryzyka sercowo-naczyniowego związanego z podwyższonym ciśnieniem tętniczym. Brakuje jednak danych dotyczących użyteczności pomiarów cSBP w ocenie ryzyka wystąpienia uszkodzenia narządowego u dzieci z nadciśnieniem tętniczym.
Cel pracy. Celem pracy była ocena nieinwazyjnych pomiarów cSBP, ciśnienia i wskaźnika wzmocnienia (AugP, AugInd) jako predyktorów przerostu lewej komory serca (LVH) oraz grubości kompleksu błona wewnętrzna-błona środkowa tętnic szyjnych wspólnych (cIMT) u dzieci z nadciśnieniem tętniczym pierwotnym.
Materiał i metody. U 114 dzieci (25 dziewczynek) (15,2 ± 2,5 roku) skierowanych w celu diagnostyki nadciśnienia tętniczego (nt), u których wykluczono wtórne przyczyny nt, wykonano pomiary 24 h ambulatoryjnego pomiaru ciśnienia tętniczego (ABPM), cSBP, centralnego ciśnienia tętna (cPP), AugP, AugInd, wskaźnika sercowego (CI), całkowitego oporu obwodowego (TPR), prędkości fali tętna (PWV), LVMI oraz cIMT.
Wyniki. U 62 pacjentów rozpoznano nadciśnienie białego fartucha, u 18 stwierdzono ambulatoryjny stan przednadciśnieniowy, u 9 ambulatoryjne nt (ANT), a u 43 ciężkie ambulatoryjne nt (CANT).
Dzieci z CANT miały większe AugP, CI, pole przekroju tętnicy szyjnej wspólnej (WCSA) oraz mniejszy TPR niż dzieci normotensyjne. Wartości cSBP korelowały z WCSA (p = 0,015; r = 0,255), natomiast AugP z LVMI (p = 0,02; r = 0,220). cSBP nie różnicowało dzieci pod względem występowania LVH oraz uszkodzenia naczyniowego. ABPM cechowała większa czułość i mniejsza swoistość w predykcji LVH niż cSBP. Dla wzrostu wartości cIMT oraz WCSA zarówno ABPM, jak i cSBP charakteryzowały się podobną czułością i swoistością.
Wnioski. cSBP oraz AugP korelowały z markerami uszkodzenia narządowego (TOD) związanego z nt. Pomimo że czułość i swoistość pomiarów cSBP i ABPM jako predyktorów uszkodzenia naczyniowego była podobna, ABPM okazał się lepszym predyktorem LVH.
Summary
Introduction. Central systolic blood pressure (cSBP) is assumed to be the best indicator of cardiovascular risk caused by elevated blood pressure. However, there are no data on the usefulness of cSBP measurments in the assessment of the risk of target organ damage (TOD) in hypertensive children.
Aim. The aim of study was to evaluate the usefulness of noninvasive measurements of cSBP, AugP and AugInd as predictors of increased left ventricular hypertrophy (LVH) and increased carotid intima-media thickness (cIMT) in children with primary hypertension.
Material and methods. 114 children (25 girls), mean age 15.2 ± 2.5 years, referred because of elevated blood pressure and with excluded secondary hypertension, were included in the study. In all patients, 24h ambulatory blood pressure monitoring (ABPM), cSBP, central pulse pressure (cPP), AugP, AugInd, cardiac index (CI), total peripheral resistance (TPR), pulse wave velocity (PWV), LVMI and cIMT were measured.
Results. In 62 patients white coat hypertension was diagnosed, 9 had ambulatory hypertension and 43 had severe ambulatory hypertension. Children with severe ambulatory hypertension had greater AugP, CI and carotid wall cross sectional area (WCSA) and lower TPR. cSBP correlated with WCSA (p = 0.015; r = 0.255) and AugP with LVMi (p = 0.02; r = 0.220).
ABPM had greater sensitivity and lower specificity for predicting LVH than cSBP. ABPM and cSBP had similar sensitivity and specificity as predictors of cIMT and WCSA.
Conclusions. Although sensitivity and specificity of cSBP and ABPM as predictors of arterial injury were similar, ABPM performed better as a predictor of LVH. The results of our study indicate a much higher risk of TOD in children with severe ambulatory hypertension and show that the assessment of cSBP, which is also a predictor of LVH, may be a new criterion for drug therapy implementation.
Introduction
Central systolic blood pressure (cSBP) is assumed to be the best indicator of cardiovascular risk caused by elevated blood pressure. It’s predictive accuracy has been demonstrated in a number of studies (1-4). However, there are no data on the usefulness of measurements of cSBP, augmentation pressure (AugP) and augmentation index (AugInd) in assessment of risk of target organ damage (TOD) in hypertensive children.
Aim
The aim of the study was to evaluate the usefulness of noninvasive measurements of cSBP, AugP and AugInd as predictors of increased left ventricular mass index (LVMI) and increased carotid intima-media thickness (cIMT) in children with primary hypertension.
Material and methods
The study was performed according to the Declaration of Helsinki and with the approval of the Children’s Memorial Health Institute Ethics Committee. All patients (pts) and parents gave consent to participate in the study.
One hundred fourteen patients (114 pts; mean age: 15.2 years; range: 12.7-17.7 years; 25 girls) with newly diagnosed and untreated primary hypertension, who underwent full diagnostic approach to exclude secondary hypertension, were included in the study. The exclusion criteria were: presence of any significant chronic disease (except for PH) including diabetes mellitus and chronic kidney disease, any acute illness including infections in the 6 weeks preceding enrolment, and incomplete data.
PH was diagnosed according to The Fourth Task Force Report and European Society of Hypertension guidelines and confirmed by 24-hour ambulatory BP monitoring (ABPM) (5, 6). Blood pressure (BP) status was defined according to the ambulatory blood pressure measurement classification (7).
ABPM measurements
All ABPM measurements were assessed oscillometrically using SpaceLabs Monitor 90207, and the most appropriate cuff was applied on the non-dominant arm. Readings were taken every 20 minutes during daytime and every 30 minutes at night. Recordings lasting ≥ 20 hours with ≥ 80% of correct readings were considered valid and were included in the analysis. We used a recently published classification system based on ABPM to classify patients as having normal BP, ambulatory hypertension, and severe ambulatory hypertension (7, 8).
Measurement of carotid to femoral PWV
The Vicorder system provides a simple and quick non-invasive oscillometric method of obtaining the Pulse Wave Velocity for an arterial segment. Measurement was performed in the supine position after 5 minutes of rest using the Vicorder device according to the current guidelines (9). A 100 mm-wide BP cuff was placed around the right upper thigh to measure the femoral pulse wave and a 30 mm plethysmographic partially inflatable sensor was placed over the carotid region in order to pick up the carotid pulse wave. Both cuffs are automatically inflated to 65 mmHg and the corresponding oscillometric signal from each cuff is digitally analyzed using the latest patented technique to accurately extract, in real time, the pulse time delay and consequently the Pulse Wave Velocity.
Measurement of central blood pressure (pulse wave analysis)
The Vicorder device analyses the waveform of radial artery pulse obtained oscillometrically and then, using transfer function, calculates the aortic waveform. Prior to the measurement, it is necessary to enter the individual features and the value of blood pressure measured at the brachial artery. The system, after having obtained the measurements, calculates and presents an approximated waveform of the aortic valve, from which we can acquire a number of parameters describing the characteristics of the arterial system, including the aortic (central) systolic blood pressure (cSBP), augmentation pressure (Aug Press), augmentation index (Aug Index), aortic pulse pressure (AoPP), cardiac output (CO) and the total peripheral resistance index (TPRI) (9-11). CBP status was defined according to the recently published reference values. Values below the 95th percentile for age and sex were considered as normal (12).
Echocardiography
All echocardiography examinations were performed by 1 examiner who knew the clinical diagnosis, but was not aware of the severity of hypertension and the effectiveness of treatment. Echocardiography measurements were performed according to the guidelines of the American Society of Echocardiography (13). To standardize the left ventricular mass to height, LVMI was calculated according to the de Simone formula (14). Left ventricular hypertrophy (LVH) was defined as a LVMI value above the 95th percentile for age- and sex-based reference data (15).
Carotid-intima media thickness (cIMT) and wall cross sectional area (WCSA) of carotid arteries measurements
cIMT was evaluated by ultrasound, and SD of normal values for cIMT was obtained according to the methodology described previously (16, 17). Mean WCSA was calculated from the equation:
WCSA = π (dD/2 + IMT)2 – π(dD/2)2, where dD is the mean diastolic diameter (16).
Laboratory investigations
The following metabolic cardiovascular risk factors were assessed at diagnosis: plasma glucose level, lipid profile and serum uric acid. Blood samples were taken after 12 hours of fasting. The plasma glucose level was measured by a Dimension analyser.
Statistical analysis
The anthropometrical indices, IMT, WCSA, LVMI and PWV values were expressed as absolute values and SDS values according to the referential normative values published recently (12, 17).
The homogeneity of variance was checked with the Shapiro-Wilk test. Continuous variables with a normal distribution were compared using the Student t-test for independent variables. Continuous values with abnormal distribution were compared using the Wilcoxon test. Variables with normal distribution were presented as mean and SD values, whereas variables with abnormal distribution were presented as median and range values between the 5th and the 95th percentiles. The correlation analysis was performed using Spearman test for abnormal distribution. Variables with significant correlation including changes in anthropometrical parameters and changes in BP and metabolic parameters were then included in the step-wise multiple regression analysis. P values < 0.05 were considered statistically significant, and values between 0.05 and 0.1 were considered as demonstrating trend toward significance.
Results
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
24 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
59 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
119 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 28 zł
Piśmiennictwo
1. Roman MJ, Devereux RB, Kizer JR et al. : Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension 2007; 50: 197-203.
2. Jankowski P, Kawecka-Jaszcz K, Czarnecka D et al.: Aortic Blood Pressure and Survival Study Group. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension 2008; 51: 848-855.
3. Vlachopoulos C, Aznaouridis K, O’Rourke MF et al.: Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J 2010; 31: 1865-1871.
4. Wang KL, Cheng HM, Chuang SY et al.: Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens 2009; 27: 461-467.
5. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on diagnosis, evaluation and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114: 555-576.
6. Lurbe E, Cifkova R, Cruickshank JK et al.: European Society of Hypertension. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens 2009; 27: 1719-1742.
7. Urbina E, Alpert B, Flynn J et al.: American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee. Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young and the Council for High Blood Pressure Research. Hypertension 2008; 52: 433-451.
8. Flynn JT, Daniels SR, Hayman LL et al.: American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension 2014; 63: 1116-1135.
9. Fischer DC, Schreiver C, Heimhalt M et al.: Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J Hypertens 2012; 30: 2159-2167.
10. Van Bortel LM, Laurent S, Boutouyrie P et al.: Artery Society; European Society of Hypertension Working Group on Vascular Structure and Function; European Network for Noninvasive Investigation of Large Arteries. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30: 445-448.
11. Kracht D, Shroff R, Baig S et al.: Validating a new oscillometric device for aortic pulse wave velocity measurements in children and adolescents. Am J Hypertens 2011; 24: 1294-1299.
12. Elmenhorst J, Hulpke-Wette M, Barta C et al.: Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis 2015; 238: 9-16.
13. Nagueh SF, Appleton CP, Gillebert TC et al.: Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22: 107-133.
14. De Simone G, Deveraux RB, Daniels SR et al.: Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 1995; 25: 1056-1062.
15. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR: Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 2009; 22: 709-714.
16. Jourdan C, Wuhl E, Litwin M et al.: Normative values of intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens 2005; 23: 1707-1715.
17. Doyon A, Kracht D, Bayazit AK et al.: 4C Study Consortium. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension 2013; 62: 550-556.
18. Elmenhorst J, Hulpke-Wette M, Barta C et al.: Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis 2015; 238: 9-16.
19. Shimizu M, Kario K: Review: Role of the Augmentation Index in Hypertension. Therapeutic Advances in Cardiovascular Disease 2008; 2: 25-35.
20. Kelly R, Hayward C, Avolio A, O’Rourke M: Noninvasive Determination of Age-related Changes in the Human Arterial Pulse. Circulation 1989; 80: 1652-1659.
21. Palatini P, Casiglia E, Gąsowski J et al.: Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag 2011; 7: 725-739.
22. Weber, Auer J, O’Rourke MF et al.: Increased Arterial Wave Reflections Predict Severe Cardiovascular Events in Patients Undergoing Percutaneous Coronary Interventions. European Heart Journal 2005; 26: 2657-2663.
23. Chirinos JA, Zambrano JP, Chakko S et al.: Aortic Pressure Augmentation Predicts Adverse Cardiovascular Events in Patients With Established Coronary Artery Disease. Hypertension 2005; 45: 980-985.
24. Saba PS, Roman MJ, Pini R et al.: Relation of Arterial Pressure Waveform to Left Ventricular and Carotid Anatomy in Normotensive Subjects. J Am Coll Cardiol 1993; 22: 1873-1880.
25. Hashimoto J, Watabe D, Hatanaka R et al.: Enhanced Radial Late Systolic Pressure Augmentation in Hypertensive Patients With Left Ventricular Hypertrophy. Am J Hypertens 2006; 19: 27-32.
26. Roman MJ, Okin PM, Kizer JR et al.: Devereux R.B. Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J Hypertens 2010; 28: 384-388.
27. Jankowski P, Kawecka-Jaszcz K, Czarnecka D et al.: Ascending aortic, but not brachial blood pressure-derived indices are related to coronary atherosclerosis. Atherosclerosis 2004; 176: 151-155.
28. Niemirska A, Obrycki L, Wojciechowska E, Litwin M: Haemodynamic patterns in children with primary hypertension – preliminary brief report. Nadciśnienie Tętnicze 2014; 4: 204-210.
29. ESH/ESC Task Force for the Management of Arterial Hypertension. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension(ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 2013; 31: 1925-1938.