Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 3/2016, s. 182-186
*Wojciech J. Marczyński
Co nowego w ortopedii i traumatologii narządu ruchu?
What’s new in orthopedics and traumatology?
Department of Orthopedics, Centre of Postgraduate Medical Education, Teaching Orthopedic Hospital in Otwock
Head of Department: Wojciech J. Marczyński, MD, PhD
Średnia życia społeczeństwa wydłużyła się o kilka lat w ostatnim dziesięcioleciu, jako chwalebny element licznych składowych, w tym medycyny. Pochodną tego osiągnięcia społecznego jest wprost proporcjonalne zwiększenie się liczby chorych ortopedycznych i pourazowych. Ortopedycznych ze względu na zużywanie się stawów, a szczególnie biodrowych i kolanowych. Pourazowych z powodu licznych obrażeń codziennych, osób o obniżonej sprawności fizycznej i zmniejszonej sprężystości tkanki kostnej. Wynika z tego, że liczba chorych ortopedycznych i pourazowych zwiększa się. Element ten stanowi poważne wyzwanie zarówno profilaktyczne, jak i lecznicze oraz jest podstawą konieczności modyfikacji i wdrożeń leczniczych, w tym operacyjnych. Stąd próba odpowiedzi na pytanie „co nowego” w biologii i biomechanice leczenia.
The average life of the society extended a few years in the last decade, as a glorious part of many components, including medicine. Derivative of this social achievement, is directly proportional increase in the number of patients orthopedic and traumatic. Orthopedic due to wear of the joint, especially hip and knee. Traumatic because of numerous injuries, everyday people with reduced physical and decreased elasticity of the bone tissue. It follows that the number of orthopedic patients, and post-traumatic increases. This element is a major challenge for both preventive and therapeutic, and is the basis of the need for modification and implementation of medicines, including operating. Thus, the “what’s new” in biology and biomechanics of treatment?

The question “what’s new?” is often asked in many areas of medicine. Such a question is usually deep, because it is not just about new theoretical issues but those that can be applied in clinical practice and, above all, result in improved results of current treatments. The answer to such a question in the field of orthopedics and traumatology is mainly due to biological reasons. We often pose additional questions, such as: what biological needs must we meet in order to obtain the desired outcome of treatment? This is the most difficult question in our specialty and answering it results from the new things that we introduce into the treatment process.
The “what’s new?” question is usually an expression of the environment’s interest in the development of the field of medicine with the hope of enhancing treatment effectiveness and increasing the possibility of healing the sick. Therefore, the convention of the development of the medical “from patient to patient” art testifies to practical development, avoiding the merely theoretical development contributing much to clinical practice. The significant role of the basic sciences, whose achievements condition the development of the applied sciences, should be differentiated in the preliminary considerations. The implementation of these achievements in clinical practice is always a joint success and often a contribution to the next research stages (1).
Orthopedics and musculoskeletal traumatology are extremely demonstrative fields as regards their progress or lack thereof in treatment and the image of her effectiveness.
Elements of biology, biomechanics and mechanics are indispensable components of treatment. Each component includes biologically key or apparent elements in the so-called modernity or innovation of procedures. In other words, modernity is not always a cure, it happens so when modernity is not due to the basics of the biology, biomechanics and procedure mechanics of treating diseases and musculoskeletal injuries.
What’s then new in biology, biomechanics and procedure mechanics in traumatology and orthopedics?
What’s new in the biology of treating musculoskeletal tissues, especially bones? It is true that biological processes of bone healing have been unchanged since the time of the evolutionary formation of the human skeleton but the ability to stimulate bone healing with the use of fracture fixation instruments has developed very slowly over time.
The possibility of learning the process of the clinical biology of bone healing has proven to be a complex issue and the ability to stimulate bone healing with the use of instruments, in other words, optimizing bone healing without external immobilization, has proven to be even more difficult. The need for surgical treatment of fractures was due to the expectations of patients and doctors in terms of getting comfortable treatment without plaster and the possibility of obtaining bone healing in the most optimum time. It is known that the time of bone healing cannot be accelerated, but we can influence the elimination of the components delaying healing, resulting in obtaining bone healing in the optimum time for the type of fracture, treatment method and biological condition of the patient.
No-gypsum treatment eliminates the time needed for the treatment of the so-called gypsum damage, which is often longer than bone healing and significantly shortens the time to improve movements, executed from the first day after surgery.
Answering the fundamental “what’s new?” question should not involve talking about the numerous company technological solutions, as there are a lot of them but they unfortunately often delay the process of bone healing or make it impossible to obtain it, because they are often not biologically compatible with the process of bone healing histology and biomechanics.
Refining the instruments of no-gypsum treatment, with their optimization, has also been an epoch novelty in the treatment of fractures in recent years. This treatment consists in locking long bone fractures, their shafts, epiphyses and sometimes metaphyses in intramedullary stabilization, depending on the experience of the operator. It is biologically very important not to open the fracture site, as instruments are introduced from the end of the bone piece through a very small, approx. 4 cm surgical approach. Therefore a post-traumatic hematoma is left with numerous progenitor (mesenchymal) cells conditioning the initiation of a bone union. This item is biologically important to starting the process of a bone union (2).
Another novelty in the treatment of fractures using the mentioned method optimizing the time of bone union is the ability of self-reducing resorption gaps in the locking intramedullary instrumentation. The resorption gap of bone fragments is formed as a result of necrosis of their ends. The necrosis is a consequence of their traumatic lack of blood supply as a result of damage to blood nutrients. The compact bone tissue of which long backbone is built is sufficiently well-vascularized, but only until the fracture. Fractures interrupt intraosseous vessels, resulting in the necrosis of bone fragments ends in the first weeks after the fracture. Necrotic bones get resorbed. The extent of the zone of the necrosis of bone fragments ends is not possible to be determined, therefore, even with anatomical setting fractures and their static union, the resorption gap becomes the cause of the delay or no union of elements. An important novelty of conduct is the use of locking intramedullary stabilization with autoreduction of resorption gaps by using a dynamic fixation. The dynamic union of bone fragments, their mechanically pressing of each other with reducing resorption gaps, is obtained through the use of a dynamic intramedullary nail hole in the longer fragment. A novelty in this method is patient’s comfort resulting from their treatment without immobilization, with the possibility of movement and exercising neighboring joints, early verticalization in the first postoperative day after surgery and walking with progressively increased burden of the fractured limb, which stimulates the progress of bone healing. Such opportunities have not yet been achieved during treatment with many other types of fixations, including plates. The plates, particularly those conventional, fixed the fragments only mechanically, not biomechanically, without the possibility of stimulating bone union and it being significantly delayed or pseudarthrosis of fracture healing.
The novelty thus relates to the possibility of developing the biomechanics of stabilizing fractures with a bone union and not only the mechanics of unions which impedes, or even prevents, the progress of bone union.
Stabilization with locking plates is a technological novelty for the treatment of fractures of spongy bones, in particular epiphyseal and metaphyseal fractures of long bones. The plates are used when it is not possible to use the locking intramedullary stabilization. Stabilization with such plates should concern only the spongy bone tissue, or epiphyseal-metaphyseal fractures. Spongy bones are much better vascularized than the compact tissue of bones, it has a greater tolerance of stabilization shortages and achieving stable bone union. The technology of locking plates means the possibility of locking screws in the holes of the plates, in other words, there is no possibility of micro-motions between the screw and the plate, which is the fundamental cause of other screws’ loosening and union instability. Thus, locking plates are a novelty in treating geriatric (low-energy) fractures within the spongy bone, where the poor mechanical value of bones predisposes the loosening of non-locking plates. Locking plates also enable non-gypsum healing without immobilization, therefore, they do not generate algodystrophic bone loss resulting in many months of symptoms, regardless of the fracture healing.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Korsak J, Rzeszotarska A, Marczyński W et al.: Ocena stężenia czynników wzrostu pochodzenia płytkowego w koncentracie stosowanym w celu regeneracji uszkodzonej tkanki kostnej. Ortopedia Traumatologia Rehabilitacja 2013; 15(5): 379-388.
2. Marczyński W: Biomechanika w ortopedii i traumatologii narządu ruchu. Mechanika techniczna. [W:] Będziński R (red.): Biomechanika. Tom XII, część VIII. PAN, Warszawa 2011: 616-639.
3. Sarzi-Puttini P, Cimmino MA, Scarpa R et al.: Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum. 2005 Aug; 35(1 Suppl 1): 1-10.
4. Sharma L: Epidemiology of osteoarthritis. [In:] Moskowitz RW, Howell OS, Altman RD et al.: (eds.): Osteoarthritis: diagnosis and medical/surgical management. 3rd ed. Saunders, Philadelphia 2001: 3-17.
5. Julkunen P, Wilson W, Jurvelin JS, Korhonen RK: Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading. Med Biol Eng Comput 2009; 47: 1281-1290.
6. Marczyński W, Białecki J: Analiza biologicznych możliwości „ochrony” chrząstki stawowej. Ortopedia Traumatologia Rehabilitacja 2013; 15; 5(6): 509-515.
7. Marczyński W, Białecki J (red. wyd. pol.): Obrady uczestników międzynarodowego spotkania mające na celu uzgodnienie stanowisk w sprawie okołoprotezowego zakażenia stawu Consensus. Medisfera, Otwock 2015.
8. Walczak P, Rak S, Białecki J, Marczyński W: Analiza czynników ryzyka powikłań septycznych protezoplastyk stawu biodrowego w materiale klinicznym. Ortopedia Traumatologia Rehabilitacja 2015; 17(3): 289-295.
9. Grajek A Białecki J, Marczyński W et al.: Retrospektywna analiza badań bakteriologicznych zakażeń miejsca operowanego w oddziałach jednoprofilowego, wielooddziałowego szpitala ortopedycznego. Ortopedia Traumatologia Rehabilitacja 2015; 17(3): 275-288.
10. Marczyński W: Biologia i biomechanika leczenia wybranych złamań śródstawowych. Biblioteka Ortopedyczna i Traumatologiczna. Traumatologia Narządu Ruchu BoiT-VII-1. Exemplum, Poznań 2013.
otrzymano: 2016-02-08
zaakceptowano do druku: 2016-02-29

Adres do korespondencji:
*Wojciech J. Marczyński
Department of Orthopedics Centre of Postgraduate Medical Education Teaching Orthopedic Hospital in Otwock
ul. Konarskiego 13, 05-400 Otwock
tel./fax +48 (22) 779-54-18

Postępy Nauk Medycznych 3/2016
Strona internetowa czasopisma Postępy Nauk Medycznych