Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 1/2015, s. 64-68
Monika Kuźmińska1, 2, Magdalena Walicka1, Wojciech Kukwa2, *Ewa Marcinowska-Suchowierska1
Ocena polisomnograficzna zmian struktury snu u pacjentów z podejrzeniem zespołu zaburzeń oddychania w czasie snu o charakterze bezdechu obturacyjnego
Polysomnographic evaluation of sleep structure changes in patients with suspected OSA**
1Department of Family Medicine, Internal Medicine and Metabolic Bone Diseases, Medical Center for Postgraduate Education, Warszawa
Head of Department: Marek Tałałaj, MD, PhD, Associate Professor
2Department of Otolaryngology, Faculty of Medicine and Dentistry, Medical University of Warsaw
Head of Department: prof. Antoni Krzeski, MD, PhD
Streszczenie
Wstęp. Wyniki polisomnografii (PSG) pokazują zmiany struktury snu u chorych z zaburzeniami oddychania w czasie snu o charakterze bezdechu obturacyjnego (OSA): dłuższy sen płytki, krótszy sen głęboki i REM lub ich brak.
Cel pracy. Celem badania była analiza korelacji pomiędzy strukturą snu a zaburzeniami oddychania.
Materiał i metody. Przeanalizowaliśmy 907 PSG pacjentów z podejrzeniem OSA podzielonych na dwie grupy według AHI (ang. Apnea Hypopnea Index): bez OSA (AHI < 5) i z OSA (AHI ≥ 5). Pacjentów z OSA podzielono na stadia: łagodne (5 ≤ AHI < 15), umiarkowane (15 ≤ AHI ≤ 30) i ciężkie (AHI > 30). Analizowano czas trwania poszczególnych stadiów snu za pomocą Statistica 6.1.
Wyniki. Występowały statystycznie istotne różnice pomiędzy grupami z OSA vs bez OSA w procentowym występowaniu snu płytkiego – 76,7 vs 86,45%; głębokiego – 17,53 vs 14,35% (dla obu p < 0,0001) oraz REM – 5,87 vs 5,77% (p < 0,05 ). W grupie z OSA strukturę snu oceniono w stadiach: łagodnym (sen płytki – 79,87%; głęboki – 14,35%; REM – 5,77%); umiarkowanym (sen płytki – 82,73%; głęboki – 12,64%; REM – 4,63%) oraz ciężkim (sen płytki – 86,45%; głęboki – 9,54%; REM – 4,01%).
Wnioski. Stwierdzono dłuższy sen płytki, krótszy głęboki i REM w grupie z OSA, a w grupie bez OSA krótszy sen głęboki i REM w porównaniu do wartości fizjologicznych, czego przyczyną mogą być gorsze i niefizjologiczne warunki snu w pracowni polisomnograficznej ograniczające badanie.
Summary
Introduction. Recent polysomnography (PSG) studies show the same sleep structure changes in OSA patients: longer the light sleep, shorter or lack of the deep sleep and REM.
Aim. The aim of the study was to analyze correlation between sleep structure and breathing sleep disturbances.
Material and methods. We analyzed 907 polysomnograms of patients with suspected OSA, they were divided into 2 groups based of AHI: non-OSA (AHI < 5) and OSA (AHI ≥ 5). According to AHI OSA group was divided into: mild (5 ≤ AHI < 15), moderate (15 ≤ AHI ≤ 30), and severe (AHI > 30). We analyzed duration of sleep stages: light, deep sleep and REM using Statistica 6.1.
Results. We found the statistically significant differences of sleep structure between non-OSA and OSA population in light sleep 76.7 vs 86.45% (p < 0.0001); deep sleep 17.53 vs 14.35% (p < 0.0001); REM 5.87 vs 5.77% (p < 0.05). In OSA group sleep structure was classified in AHI dependent groups: mild (light sleep – 79.87%; deep sleep – 14.35%; REM – 5.77%); moderate (light sleep – 82.73%; deep sleep – 12.64%; REM – 4.63%); severe (light sleep – 86.45%; deep sleep – 9.54%; REM – 4.01%).
Conclusions. We found longer the light sleep, shorter deep and REM sleep in OSA, and also in non-OSA shorter deep sleep and REM comparing to physiological sleep what may be due to worse sleep laboratory conditions compared with home and may be limiting for PSG.



Introduction
Normal sleep architecture is responsible for effective rest. It is well known that deep sleep of NREM stage and REM sleep are responsible for the proper functioning of the body. The physiology of sleep stages percentage composition is the following for NREM sleep: light sleep consists of stage 1 – 5-10% and stage 2 – 45-55%, deep sleep consists of stages 3 + 4 (in new classification the 4th stage of NREM sleep has been included within stage 3; this stage is also called slow wave sleep [SWS]) (1) and takes 10-20% of total sleep time.
REM sleep is estimated in physiology to take approximately 20% of total sleep time. Excessive daytime sleepiness is a symptom common to patients with OSA and it results in many psychological consequences such as: worse quality of life, worse concentration, increased risk of motor incidence, decreased work capacity. Previous studies have shown that daytime sleepiness is more related to sleep fragmentation and to intermittent hypoxemia in OSA (2).
Sleep deprivation has also other consequences, current data suggest the relationship between sleep restriction and alterations in glucose metabolism, disregulation of appetite, decreased energy expenditure (3).
The results of many studies show that sleep disturbances are observed in patients presenting sleep-disordered breathing (SBD) primarily of obstructive sleep apnea syndrome (OSA). Usually it is sleep fragmentation and extension of light sleep and reduced deep sleep and REM. Many studies show that hypnogram of OSA patients usually presents absence of slow wave sleep and REM (2, 4). Consequences of sleep structure disturbances may underlie many clinical complications of OSA.
Aim
The aim of the study was to analyze a correlation between sleep structure and breathing sleep disturbances and to score the change in the length of sleep stages depending on the severity of the disease based on AHI. We also wanted to see the correlation between AHI and the percentage occurrence of various stages of sleep.
Material and methods
Patients
We examined retrospectively 907 (n = 907) polysomnograms recruited from patients (both sexes) referred to a sleep laboratory for suspected sleep apnea. We included patients with clinical suspicion of OSA, obese patients before bariatric surgery, patients before laryngological procedures, and patients who snored regularly. Patients were referred to the sleep laboratory by physicians of many specialties: family doctors, surgeons, internists, otolaryngologists.
The reasons for referring patients to clinical polysomnography were as follows:
– snoring,
– snoring with apnea observed bypersons sleeping in one room with the patient,
– abnormal nasal patency, and throat – before any surgery,
– excessive daytime sleepiness,
– insomnia,
– heart problems, such as hypertension resistant to treatment,
– obesity,
– prior to the surgery of obesity (bariatric surgery).
Anthropometric characteristics of the group are listed in table 1.
Table 1. Anthropometric characteristics of the group.
Mean valuesWomen
n = 271
Men
n = 636
Total
n = 907
Mean age (SD)*51.9 (14.7)51.9 (13.1)51.9 (13.6)
Mean BMI kg/m2 (SD)35.2 (10.5)31.3 (7.3)32.5 (8.6)
*Standard deviation
Polysomnographic studies were performed and evaluated in accordance with current international standards (5-7).
PSG included the following variables: electroencephalograms, electrooculograms, electromyelograms of submental muscules, electrocardiogram, airflow (nasal and oral), chest and abdominal efforts, snoring (microphone) and arterial oxyhemoglobin saturation and pulse (finger probe).
Polysomnographic recordings were evaluated with respect to:
– amount of disordered breathing during sleep,
– type of a disorder: obstructive sleep apnea, mixed, central, hypopnea,
– AHI (Apnea Hypopnea Index),
– disease severity based on AHI: (mild form of 5 ≤ AHI < 15, moderate 15 ≤ AHI ≤ 30; severe AHI > 30),
– the number of desaturations,
– the average oxygen saturation (Sa av),
– minimum oxygen saturation (Sa min),
– heart rate (HR),
– the length of non REM (non-rapid eye movement) sleep composed of light sleep stages 1 and 2 (1 + 2), and composed of deep sleep stages 3 and 4 (3 + 4),
– the length of REM sleep (rapid eye movement).
Criteria and definitions used in polysomnography
Characteristic of sleep stages
Stage 1 sleep – EOG-slow rolling eye movements. EEG-low voltage, mixed frequency; may be ? rhythm 2-7 Hz, up to 50-75 uV range; vertex sharp waves (200 uV). ? waves 4-7 Hz; low voltage, mixed frequency backgrounds; often appear as sharp vertex waves; EMG tonic activity, slight decrease compared with waking.
Stage 2 sleep – EOG slow rolling eye movement occasionally near sleep onset. EEG-low voltage, mixed frequency. Sleep spindles-bursts of 12-14 Hz activity, ≥ 0.5 s long, no amplitude requirement. K complexes sharp negative wave followed by positive component, ≥ 0.5 s long, no amplitude requirement. EMG-low level tonic activity.
Stage 3 sleep – EOG-reflects EEG. EEG – δ rhythm takes 20-50% of epoch (30 sec of sleep), high amplitude waves (higher than 75 uV) with low frequency (≤ 2 Hz). EMG-tonic activity, low level).
Stage 4 sleep – usually described as a part of stage 3, the difference is related to amount of δ rhythm (more than 50%).
REM sleep – EOG-phasic REMs. EEG-low voltage, mixed frequency, sawtooth waves, ? activity, slow α activity. EMG-tonic suppression, phasic twitches (8).
Characteristic of respiratory events
AHI (Apnea Hypopnea Index) was used as the main criterion for the OSA diagnosis. AHI was defined as the number of apneas and hypopneas per hour of sleep. We used to identify OSA AHI ≥ 5.
Using AHI criteria we divided the AHI ≥ 5 group into three severity stages:
– mild OSA 5 ≤ AHI < 15,
– moderate OSA 15 ≤ AHI ≤ 30,

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

24

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

59

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Silber MH, Ancoli-Israel S, Bonnet MH et al.: The visual scoring of sleep in adults. Journal of Clinical Sleep Medicine 2007; 3(2): 121-131.
2. Colt HG, Haas H, Rich GB: Hypoxemia vs sleep fragmentation as cause of excessive daytime sleepiness in obstructive sleep apnea. Chest 1991; 100: 1542-1548.
3. Knutson K, Spiegel K, Penev P, Cauter E: The metabolic consequences of sleep deprivation. Sleep Med Rev 2007; 11(3): 163-178.
4. Roehrs T, Zorick F, Witting R et al.: Predictors of objective level of daytime sleepiness in patients with sleep-breathing disorders. Chest 1989; 95: 1202-1206.
5. Iber C, Ancoli-Israel S, Chesson A et al.: The International Classification of Sleep Disorders Diagnostic and Coding Manual. American Academy of Sleep Medicine 2001.
6. Iber C, Ancoli-Israel S, Chesson A, Quan SF: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. 1st Ed. Westchester, American Academy of Sleep Medicine 2007.
7. Ruehland WR, Rochford PD, O’Donoghue FJ et al.: The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index. Sleep 2009; 32: 150-157.
8. Riha R: Polysomnography. [In:] Simonds AK, de Backer W: ERS Handbook of Respiratory Sleep Medicine 2012: 122-123.
9. Zieliński J: Sen i oddychanie w czasie snu człowieka zdrowego. [W:] Zieliński J, Pływaczewski R, Bednarek M: Zaburzenia oddychania w czasie snu. PZWL, Warszawa 2006: 15-23.
10. Bruyneel M, Sanida C, Art G et al.: Sleep efficiency during sleep studies: results of a prospective study comparing home-based and in-hospital polysomnography. J Sleep Res 2011; 20(1Pt2): 201-206.
11. Kayyali HA, Weimer S, Frederick C et al.: Remotely attended home monitoring of sleep disorders. Telemed JE Health 2008; 14(4): 371-374.
12. Spiegel K, Leproult R, Van Cauter E: Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354: 1435-1439.
13. Spiegel K, Tasali E, Penev P et al.: Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 2004; 141: 846-850.
14. Marshall NS, Glozier N, Grunstein RR: Is sleep duration related to obesity? A critical review of the epidemiological evidence. Sleep Med Rev 2008; 12: 289-298.
15. Taheri S, Thomas G: Is sleep duration associated with obesity – where do U stand? Sleep Med Rev 2008; 12: 299-302.
16. Bliwise DL, Young TB: The parable of parabola: what the U-shaped curve can and cannot tell us about sleep. Sleep 2007; 30: 1614-1615.
17. Cappuccio FP, Taggart FM, Kandala NB et al.: Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008; 31: 619-626.
18. Stranges S, Cappuccio FP, Kandala NB et al.: Cross-sectional versus prospective associations of sleep duration with changes in relative weight and body fat distribution: the Whitehall II Study. Am J Epidemiol 2008; 167: 321-329.
19. Tasali E, Leproult R, Ehrmann DA et al.: Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci USA 2008; 105: 1044-1049.
otrzymano: 2014-12-10
zaakceptowano do druku: 2015-01-05

Adres do korespondencji:
*Ewa Marcinowska-Suchowierska
Department of Family Medicine, Internal Diseases and Metabolic Bone Diseases
Medical Center for Postgraduate Education, Orłowski Hospital
ul. Czerniakowska 231, 02-416 Warszawa
tel. +48 (22) 584-11-01
marsu@cmkp.edu.pl

Postępy Nauk Medycznych 1/2015
Strona internetowa czasopisma Postępy Nauk Medycznych