Ludzkie koronawirusy - autor: Krzysztof Pyrć z Zakładu Mikrobiologii, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Kraków

Chcesz wydać pracę doktorską, habilitacyjną czy monografię? Zrób to w Wydawnictwie Borgis – jednym z najbardziej uznanych w Polsce wydawców książek i czasopism medycznych. W ramach współpracy otrzymasz pełne wsparcie w przygotowaniu książki – przede wszystkim korektę, skład, projekt graficzny okładki oraz profesjonalny druk. Wydawnictwo zapewnia szybkie terminy publikacji oraz doskonałą atmosferę współpracy z wysoko wykwalifikowanymi redaktorami, korektorami i specjalistami od składu. Oferuje także tłumaczenia artykułów naukowych, skanowanie materiałów potrzebnych do wydania książki oraz kompletowanie dorobku naukowego.

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Nauk Medycznych 10/2017, s. 530-535 | DOI: 10.25121/PNM.2017.30.10.530
*Bartosz Sokół1, Roman Jankowski1, Barbara Więckowska2, Łukasz Gąsiorowski3, Michael Czekajlo4
Development and evaluation of simulation based neurosurgery curriculum. Pilot study at the Poznań University of Medical Sciences
Rozwój i ocena nauczania neurochirurgii opartej na symulacji. Badania pilotażowe na Uniwersytecie Medycznym im. Karola Marcinkowskiego w Poznaniu
1Department and Clinic of Neurosurgery and Neurotraumatology, Sciences Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences
Head of Department: Professor Roman Jankowski, MD, PhD
2Department of Computer Science and Statistics, Poznań University of Medical Sciences
Head of Department: Professor Jerzy Moczko, MD, PhD
3Medical Simulation Center, Poznań University of Medical Sciences
Head of Center: Łukasz Gąsiorowski, MD, PhD
4Simulation Center, Virginia Commonwealth University Health System, Richmond VA, USA
Head of Center: Michael Czekajlo, MD, PhD
Streszczenie
Wstęp. Postępowanie z pilnymi stanami w neurochirurgii jest zadaniem złożonym. Nauczanie studentów tych umiejętności jest ograniczone względami prawnymi oraz bezpieczeństwem chorego. Symulacje tworzą możliwości uczestnictwa w opiece nad pacjentami wymagającymi pilnej interwencji neurochirurgicznej i pomagają rozwinąć umiejętności podejmowania decyzji klinicznych.
Cel pracy. Celem naszej pracy jest ocena, czy nauczanie neurochirurgii oparte na symulacjach poprawia umiejętności studentów w postępowaniu z krytycznie chorymi pacjentami i rozpoznawaniu nagłych przypadków neurochirurgicznych. Kolejnym celem jest ocena, czy poziom tolerancji na stres wpływa na zbieranie doświadczeń podczas symulacji medycznych i na efektywność działań studentów. Trzecim celem jest stworzenie narzędzia do oceny studentów podczas symulacji medycznych.
Materiał i metody. Symulacje zostały przeprowadzone na symulatorze SimMan 3G Human firmy Laerdal Medical. Scenariusze zawierały pacjentów z krwotokiem podpajęczynówkowym, ostrym krwiakiem nad- i podtwardówkowym, urazem wielonarządowym, postrzałem głowy, stanem padaczkowym, infekcją zastawki komorowo-otrzewnowej, skurczem naczyniowym wtórnym do krwotoku podpajęczynówkowego, udarem niedokrwiennym mózgu oraz urazem rdzenia kręgowego. Studenci byli oceniani przed zajęciami i po zajęciach z symulacji medycznej w oparciu o kwestionariusze, np. Likerta. Uzyskane dane zostały przeanalizowane, wykorzystując współczynnik rzetelności testów psychologicznych Cronbacha dla kwestionariuszy Likerta oraz współczynnik korelacji rang Spearmana.
Wyniki. Spośród 60 studentów V i VI roku studiów lekarskich 39 osób odpowiedziało na kwestionariusze. Odpowiedzi wykazały, że doświadczenia kliniczne podczas symulacji były pozytywne i poprawiły wiedzę na temat pilnych przypadków w neurochirurgii. Wykazano również poprawę w pewności zachowań. Instruktorzy prowadzący symulację również zaobserwowali poprawę działania zarówno poszczególnych studentów, jak i całego zespołu.
Wnioski. Studenci uczestniczący w zajęciach z symulacji neurochirurgicznych poprawiają zdolność rozpoznawania stanów nagłych w neurochirurgii. Poziom stresu doświadczany podczas zajęć z symulacji medycznych jest istotnym czynnikiem procesu dydaktycznego i powinien być ograniczony celem poprawy rozwoju studentów.
Summary
Introduction. Neurosurgical emergencies are complex tasks. The current learning environment limits students’ ability to manage acute neurosurgical emergencies due to legal and safety concerns. Simulation provides an opportunity to participate in the care of neurosurgical emergencies and develop clinical decision making skills.
Aim. We aim to determine whether neuroscience simulation curriculum improves student ability to: manage a critically ill patient, recognize neurosurgical emergencies, to assess how stress tolerance affects experience during simulations and effectiveness of students performance. The third objective is to develop a tool for student assessment.
Material and methods. The simulation was performed on SimMan 3G Human Patient Simulator (Laerdal Medical). Scenarios included subarachnoid haemorrhage, acute subdural and epidural haematoma, a politrauma patient, gunshot head injury, status epilepticus, ventriculoperitoneal shunt infection, vasospasm secondary to subarachnoid haemorrhage, ischemic stroke and spinal cord injury. Students were assessed before and after the course by completing a Likert type questionnaire. Response data was analysed using Cronbach’s reliability for Likert-type response data and Spearman’s monotonic correlation.
Results. 60 students of fifth and sixth year of medical studies attended the course. 39 students of them replied to the questionnaire. Responses demonstrated that the simulated clinical experience was positive and it improved their knowledge about neurosurgical emergencies. There was an improvement in their confidence. Instructors also observed improvement in their individual and team performance.
Conclusions. Students who attend neurosurgical simulations improve their ability to recognize neurosurgical emergencies. The level of stress related to simulation is important factor of the education process and should be reduced to improve students’ development.
Słowa kluczowe: neurochirurgia,
Introduction
Many neurosurgical emergencies are complex tasks which require considerable repertoire of knowledge and skill for effective performance. The early diagnostics are performed in Accident and Emergency Departments. Those tasks are rapid and occur in turmoil and stressful environment and can result with serious consequences. It reflects the complexity of patient care in these clinical environments as well as the challenging demand for high-quality teamwork. Important objective of simulation based medical education is to contribute to the reduction of error occurrences during medical treatment. Simulation based medical education in its widest sense can be defined as any educational activity that utilizes simulative aids to replicate clinical scenarios (1). Simulation mistakes in order to enhance patient safety and improve medical care are a central goal of simulation based medical education (2). It is especially important for neurosurgical patients where urgent operations performed within few hours of onset have much better prognosis compared to mortality if surgery is delayed (3). High-performance environments which are characteristic of neurosurgical emergencies involve complex, multicomponent decisions; rapidly evolving, ambiguous cases; information overload; severe time pressure; severe consequences for error; adverse physical conditions; sustained fatigue; and extensive team interactions. Therefore there exist demands on medical education to prepare young professionals to practice in the 21st century emergency medicine paradigm. It is also important to focus attention on what constitutes effective scenario-based training so that medical professionals can practice and receive feedback on crucial skills. For example the current standard of surgical evacuation of all haematomas within 4 hours is not being met in Europe. Most of the time it is not related to the inability to diagnose a haematoma but to the problems with patient transfer. The efficiency of management of all other neurosurgical emergencies also requires improvement in emergency departments. Delays were identified at every stage of the management of these patients and no single step was identified as the major cause. The mean time to surgical decompression was 5.0 h and 32% performed with in 4 h. Patients who initially presented to a district hospital and required transfer for neurosurgery were decompressed in 5.4 vs 3.7 h for those admitted directly. There may be time savings from improvement of initial treatment in district hospitals (4, 5). This is the field where more thematic programmes of simulation based medical education are needed. In the Simulation Centre at Poznań University of Medical Sciences we developed a neuroscience simulation curriculum which is used to improve the student’s ability to recognize neurosurgical emergencies. In this paper we are describing neurosurgical themed simulation scenarios for medical students (6-8).
Aim
We aim to determine whether neuroscience simulation curriculum improves student ability to: manage a critically ill patient, recognize neurosurgical emergencies, to assess how stress tolerance affects experience during simulations and effectiveness of students performance. The third objective is to develop a tool for student assessment.
Material and methods
Sixty students of fifth and sixth year of medical studies attended the course. Those students were exposed to scenarios which were created at the Simulation Centre at Poznan University of Medical Sciences. The groups consisted of twelve students who were divided on three groups with four students each. The Simulation was performed on SimMan 3G Human Patient Simulator at the Center for Medical Simulation in Poznań. Students had to manage scenarios of patients with subarachnoid haemorrhage, acute subdural haematoma, acute epidural haematoma, politrauma patient, gunshot head injury, status epilepticus, ventriculoperitoneal shunt infection, vasospasm secondary to subarachnoid haemorrhage, ischemic stroke and spinal cord injury. Although those cases are relatively rare in emergency departments they constitute core of neurosurgical emergencies. The scenarios were designed by our team and undergo continuous quality improvement. We used deidentified data of real clinical cases from our Emergency Department. Prior to the simulation program each group was sent a set of questions concerning their self-confidence (tab. 1). The questionnaire was prepared using Likert-type scale (9) and send using Google Forms tool. Participants were asked to indicate their level of agreement with an item by choosing one of four categories ranging from “do not agree” to “strongly agree”. Each group of students consisted of 12 students who were divided into three subgroups. While one group was managing the neurosurgical case, the remaining two groups were watching the scenario live in a separate room. Each scenario lasted approximately 10-11 minutes and then was followed by the debriefing. All sessions were videotaped to review during the debrief and for QI and research. Following those simulations all students were send a questionnaire which is based on the Simulation Effectiveness Tool (10). Questions were subdivided in three groups: simulated clinical experience (tab. 2), learning subscale (tab. 3) and confidence subscale (tab. 4) (10). Response data was analyzed using Cronbach’s reliability for Likert-type response data (11). PQStat software version 1.4.8 for statistical analysis was used. Analysis of correlation with questions asked before the course was performed using Spearman’s monotonic correlation.
Tab. 1. Questions sent before the course
Do you think that the negative emotions associated with failure during the simulation improve memorizing a particular material?
I can deal with people who are arrogant at work.
I easily get nervous and confused and lose confidence in stressful situations.
I don’t mind when someone points out my mistakes.
Tab. 2. Questions concerning simulated clinical experience in post course questionnaire
I enjoyed working with the simulator.
The group was the right size to facilitate my learning.
The time allotted for this activity was adequate.
I had fun while I was learning.
Tab. 3. Questions concerning learning in post course questionnaire
The instructor’s questions helped me to think critically.
Completing the simulation helped me understand classroom information better.
I feel better prepared to care for real patients.
I developed a better understanding of the pathophysiology of the conditions in the simulation.
I developed a better understanding of the medications that were in the simulation.
My assessment skills improved.
I am able to better predict what changes may occur with my real patients.
I was challenged in my thinking and decision-making skills.
I learned as much from observing my peers as I did when I was actively involved in caring for the simulated patient.
Debriefing and group discussion were valuable.
I would attend simulation again.
Tab. 4. Questions concerning confidence in post course questionnaire
I felt like it was ok to make a mistake.
I felt stressed when the simulator’s condition worsened.
I feel more confident in my decision-making skills.
My communication skills have improved a lot.
My ability to deal with arrogant people have improved a lot.
Do you think that the stress associated with simulation improves remembering the material?
Do you think that negative emotions are associated with the failure to remember the material?
During the simulation I experienced feelings of nervousness, confusion and I lost confidence.
Classes of medical simulation helped me to control the feeling of nervousness, confusion, and improved self-confidence.
I feel more confident that I will be able to recognize changes in my real patient’s condition.
The simulator and the environment were realistic.
Did you have sense that the atmosphere of trust and transparency was created during error analysis?
Have medical simulations taught you a more constructive approach to your own mistakes?
Results

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 30 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

Piśmiennictwo
1. Ziv A, Ben-David S, Ziv M: Simulation based medical education: an opportunity to learn from errors. Med Teach [Internet] 2005; 27(3): 193-199.
2. Minha S, Shefet D, Sagi D et al.: “See one, sim one, do one” – a national pre-internship boot-camp to ensure a safer “student to doctor” transition. PLoS One [Internet] 2016; 11(3): 1-9.
3. Greenberg MS: Handbook of neurosurgery. 6th ed. Thieme Publishing Group, New York 2005: 672-674.
4. Bulters D, Belli A: A prospective study of the time to evacuate acute subdural and extradural haematomas. Anaesthesia [Internet] 2009; 64(3): 277-281.
5. Cannon-Bowers J: Recent advances in scenario-based training for medical education. Curr Opin Anaesthesiol [Internet] 2008; 21(6): 784-789.
6. Selden NR, Anderson VC, McCartney S et al.: Society of Neurological Surgeons boot camp courses: knowledge retention and relevance of hands-on learning after 6 months of postgraduate year 1 training. J Neurosurg [Internet] 2013 Sep [cited 2013 Dec 8]; 119(3): 796-802.
7. Edwards D: The effectiveness of strategies and interventions that aim to assist the transition from student to newly qualified nurse. JBI Libr Syst Rev 2011; 9(53): 2215-2323.
8. Musacchio MJ, Smith AP, McNeal CA et al.: Neuro-critical care skills training using a human patient simulator. Neurocrit Care [Internet] 2010; 13(2): 169-175.
9. Likert R: A technique for the measurement of attitudes [Internet]. The Science Press, New York 1932.
10. Elfrink Cordi VL, Leighton K, Ryan-Wenger N et al.: History and development of the Simulation Effectiveness Tool (SET). Clin Simul Nurs [Internet]. Elsevier Inc 2012; 8(6): e199-210.
11. Gadermann AM, Guhn M, Zumbo BD: Estimating Ordinal Reliability for Likert-Type and Ordinal Item Response Data: A Conceptual, Empirical, and Practical Guide. Pract Assessment, Res Eval [Internet] 2011; 17(3).
12. Klein G: Naturalistic decision making. Hum Factors 2008; 50(3): 456-460.
13. Bond S, Cooper S: Modelling emergency decisions: recognition-primed decision making. The literature in relation to an ophthalmic critical incident. J Clin Nurs [Internet] 2006; 15(8): 1023-1032.
14. Rezmer J, Begaz T, Treat R, Tews M: Impact of group size on the effectiveness of a resuscitation simulation curriculum for medical students. Teach Learn Med [Internet] 2011; 23(3): 251-255.
15. Nielsen B, Harder N: Causes of student anxiety during simulation: what the literature says. Clin Simul Nurs [Internet] 2013; 9(11): e507-512.
16. Ghazali DA, Ragot S, Breque C et al.: Randomized controlled trial of multidisciplinary team stress and performance in immersive simulation for management of infant in shock: study protocol. Scand J Trauma Resusc Emerg Med [Internet] 2016; 24(1): 36.
17. Yerkes RM, Dodson JD: The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol [Internet] 1908; 18(5): 459-482.
18. Demaria S, Bryson EO, Mooney TJ et al.: Adding emotional stressors to training in simulated cardiopulmonary arrest enhances participant performance. Med Educ [Internet] 2010; 44(10): 1006-1015.
19. Kulasegaram KM, Grierson LEM, Norman GR: The roles of deliberate practice and innate ability in developing expertise: evidence and implications. Med Educ [Internet] 2013; 47(10): 979-989.
20. Fernandez CSP, Peterson HB, Holmstr SW et al.: Developing emotional intelligence for healthcare leaders. [In:] Di Fabio A (ed.): Emotional intelligence – new perspectives and applications [Internet]. InTech 2012: 239-260.
21. Sawyer T, Sierocka-Castaneda A, Chan D et al.: The effectiveness of video-assisted debriefing versus oral debriefing alone at improving neonatal resuscitation performance: a randomized trial. Simul Healthc [Internet] 2012; 7(4): 213-221.
22. Mariani B, Cantrell MA, Meakim C et al.: Structured debriefing and students’ clinical judgment abilities in simulation. Clin Simul Nurs [Internet] 2013; 9(5): e147-155.
otrzymano: 2017-09-08
zaakceptowano do druku: 2017-09-29

Adres do korespondencji:
*Bartosz Sokół
Katedra i Klinika Neurochirurgii i Neurotraumatologii Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu Szpital Kliniczny im. Heliodora Święcickiego
ul. Przybyszewskiego 49, 60-355 Poznań
tel. +48 (61) 869-14-23
fax +48 (61) 869-14-30
bartosz.sokol@ump.edu.pl

Postępy Nauk Medycznych 10/2017
Strona internetowa czasopisma Postępy Nauk Medycznych