Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Nauk Medycznych 1/2018, s. 54-58 | DOI: 10.25121/PNM.2018.31.1.54
Kobi Ludwin1, *Lukasz Iskrzycki1, 2, Jerzy Robert Ladny3, Jolanta Majer4, Jacek Smereka1, 2, Wojciech Wieczorek5, 6, Klaudiusz Nadolny3, Halla Kaminska7, Lukasz Szarpak3, 6
Impact of a LUCAS 3 on chest compression quality during simulated cardiopulmonary resuscitation performed by lifeguards: a randomized crossover study
Wpływ zastosowania systemu LUCAS 3 na jakość uciśnięć klatki piersiowej podczas symulowanej resuscytacji krążeniowo-oddechowej wykonywanej przez ratowników wodnych: badanie randomizowane krzyżowe
1Polish Society of Disaster Medicine, Warsaw, Poland
2Department of Emergency Medical Service, Wroclaw Medical University, Poland
3Department of Emergency Medicine and Disaster, Medical University of Bialystok, Poland
4Department of Emergency Medicine, Holy Mary Memorial Provincial Specialist Hospital, Czestochowa, Poland
5Department of Anaesthesiology, Intensive Care and Emergency Medicine in Zabrze, Medical University of Silesia in Katowice, Poland
6Department of Emergency Medicine, Medical University of Warsaw, Poland
7Department of Children’s Diabetology, Medical University of Silesia in Katowice, Poland
Streszczenie
Wstęp. Wysokiej jakości uciski klatki piersiowej stanowią jeden z kluczowych elementów resuscytacji krążeniowo-oddechowej, bezpośrednio wpływających na szanse powrotu spontanicznego krążenia. Wytyczne Amerykańskiego Towarzystwa Kardiologicznego zalecają, aby uciski klatki piersiowej były prowadzone z częstością 100-120 uciśnięć na minutę, przy głębokości uciśnięć od 5 do 6 cm oraz przy zachowaniu pełnej relaksacji klatki piersiowej po każdym jej uciśnięciu.
Cel pracy. Celem badania było porównanie jakości parametrów uciskania klatki piersiowej wykonywanych w sposób bezprzyrządowy przez ratowników wodnych oraz wykonywanych z wykorzystaniem mechanicznego systemu kompresji klatki piersiowej LUCAS 3.
Materiał i metody. Przeprowadziliśmy randomizowane krzyżowe badanie z wykorzystaniem symulatora człowieka (Resusci Anne). Trzydziestu ośmiu ratowników wodnych wykonywało dwuminutowe cykle resuscytacji krążeniowo-oddechowej podczas scenariusza pozaszpitalnego zatrzymania krążenia w wyniku podtopienia.
Wyniki. Mediana głębokości uciśnięć klatki piersiowej podczas bezprzyrządowego uciskania klatki piersiowej wynosiła 46 mm (IQR: 42-50) i była statystycznie istotnie niższa niż w przypadku zastosowania systemu LUCAS 3 – 50 mm (IQR: 49-51).
Częstotliwość ucisków klatki piersiowej z wykorzystaniem systemu LUCAS 3 oraz w sposób bezprzyrządowy wynosiła odpowiednio 127 (IQR: 120-135) vs. 100 (IQR: 99-101) uciśnięć na minutę. W przypadku zastosowania systemu LUCAS 3 stopień niepoprawnej relaksacji klatki piersiowej został osiągnięty na poziomie 0% (IQR: 0-1), zaś w przypadku bezprzyrządowego uciskania klatki piersiowej wynosił on 48% (IQR: 34-65).
Wnioski. Zastosowanie systemu kompresji klatki piersiowej LUCAS 3 istotnie statystycznie podniosło jakość ucisków klatki piersiowej w porównaniu z bezprzyrządowym uciskaniem klatki piersiowej wykonywanym przez ratowników wodnych.
Summary
Introduction. High quality chest compressions, which are one of the basic elements of resuscitation procedures, directly affect the chances of returning of spontaneous circulation. The American Society of Cardiology recommends that compressions should be performed with a frequency of 100 to 120 compressions per minute with a depth of 5-6 cm and allowing for the full chest relaxation after each compression.
Aim. The aim of the study was to compare the quality parameters of chest compressions performed during manual chest compressions and resuscitation performed with the use of the LUCAS 3 chest compression system.
Material and methods. We conducted randomized crossover study on manikin (Resusci Anne). Thirty-eight lifeguards participated in an out-of-hospital simulation of cardiac mechanism caused by drowning during which lifeguards performed 2-min cycle of cardiopulmonary resuscitation.
Results. The median depth of chest compressions for manual chest compression was 46 mm (IQR: 42-50) and was statistically significantly lower than when using the mechanical compression system LUCAS 3 – 50 mm (IQR: 49-51). Compression rate with and without mechanical chest compression LUCAS 3 varied and was at 127 (IQR: 120-135) vs. 100 (IQR: 99-101) compressions per minute, respectively. When using the LUCAS 3 chest compression system, we achieved a 0% (IQR: 0-1) of incomplete chest relaxation vs. 48% (IQR: 34-65) when performing manual chest compressions.
Conclusions. The use of the LUCAS 3 chest compression system significantly increased the quality of chest compressions compared to the manual compression of the chest performed by lifeguards.
INTRODUCTION
The ability to perform cardiopulmonary resuscitation is one of basic procedures which lifeguards should be able to perform. Drowning is a major cause of morbidity and mortality worldwide, predominately affecting low- and middle-income countries (LMICs). According to the World Health Organization (WHO), drowning accounted for an estimated 372,000 deaths in 2012 (1). Patients in age from 1 to 18 years (2) are especially susceptible with over 450 children drowning each day worldwide and thousands suffering debilitating injuries, including brain injury, as a result of drowning events. In high-income countries (HICs), drowning risk factors include male gender, less than 14 years of age (3, 4), risky behavior including alcohol use (3, 5), rural areas (6), low income (7), and lack of supervision (3).
However, regardless of the cause of cardiac arrest, lifeguards should perform high quality cardiopulmonary resuscitation. According to the current guidelines for cardiopulmonary resuscitation (CPR) published in 2015 by the European Resuscitation Council (8, 9), CPR should be based on high-quality chest compressions and rescue breaths. The guidelines recommend that for adults chest compressions are performed with a frequency of chest compressions (CCPM) of 100-120 compressions. The depth of compressions should be of least 5 cm, and allow for the full relaxation of the chest after each pressure. An additional aspect of cardiopulmonary resuscitation is performing rescue breaths, which should be of volume of 6-7 mL/kg.
However, according to the studies, many people do not achieve a proper depth when compressing chest and also perform the compressions at too high. The quality of chest compressions is influenced by many factors including the physical condition of lifeguards. The search for solutions that may improve the quality of chest compressions is one of the main directions of research in emergency medicine.
AIM
The aim of the study was to compare the quality parameters of chest compressions performed during manual chest compressions and resuscitation performed using the LUCAS 3 chest compression system.
MATERIAL AND METHODS
Design
This was a prospective randomized crossover simulation study where each participant performed chest compression with and without LUCAS 3 device. The study is a continuation of the research cycle undertaken by the authors to determine the most optimal method of chest compressions by lifeguards (10).
Setting
Study was conducted from May 2017 to December 2017. The study protocol was approved by the Institutional Review Board of the International Institute of Rescue Research and Education (Approval no. 32.12.2017.IRB).
Participants
The participation in the study was voluntary. 38 lifeguards with a professional experience over 2 years were included. The only exclusion criterion for this study was having a degree in a medical field (i.e. paramedic studies).
Training
Prior to the study, all participants took part in a study regarding elements of basic life support, which also included the operating of the mechanical chest compression device LUCAS 3 (fig. 1). LUCAS 3 is an electric-powered mechanical chest compression device. LUCAS 3 was designed to work in two modes: 30 chest compressions to 2 rescue breaths, or constant compressions at a consistent rate and depth (11, 12). After theoretical part and demonstration of the correct way of using the device, the participants had a 20-minute practical training regarding the usage of the device.
Fig. 1. LUCAS 3 mechanical chest compression device
Study protocol
During the main study, the participants were performing a 2-minute cardiopulmonary resuscitation cycle with and without the usage of LUCAS 3. In order to simulate the patient in cardiac arrest requiring cardiopulmonary resuscitation we used Resusci Anne Simulator (Laerdal, Stavanger, Norway).
The participants were divided into two groups. In order to assign the patients to the aforementioned groups we used the coin throw technique. The first group performed cardiopulmonary resuscitation without using a chest compression system. The second group performed resuscitation using the LUCAS 3 chest compression system. The participants then had a 30-minute break and then performed cardiopulmonary resuscitation using a different technique. A detailed randomization procedure is presented on figure 2. Compressions of the chest were performed continuously, in order to make it possible a supraglottic airway device was used as it allows for asynchronous resuscitation (13).
Fig. 2. CONSORT flow chart
Measurements
All parameters regarding the quality of chest compressions were measured with SimPad PLUS which was attached to the simulator and allows for both recording of resuscitation parameters and also allows for controlling the simulator. The parameters of chest compression effectiveness (compression depth, compression rate, incomplete chest relaxation rate, inappropriate hand position on the chest surface) were monitored with software compatible with the training manikin. Following the CPR effort, the participants were asked to rate the usefulness of chest compression device LUCAS 3 on a scale ranging from 1 (definitely useless) to 5 (definitely useful).
Statistical analysis
All of statistical analysis were performed with the Statistical Package Statistica ver. 12 (StatSoft, Tulusa, OK, USA). Each variable was evaluated for normality using Kolmogorov-Smirnov and Shapiro-Wilk normality tests. Analysis of variance (ANOVA) post hoc tests with the Bonferroni corrections for metric data were used for univariate analysis to compare the three study groups. The Kruskal-Wallis test was used to compare non-normally distributed data. Results were considered significant at p < 0.05.
Results
The study group included 38 lifeguards (15 female; 41.7%) with a mean age of 25.5 ± 3.5 years, mean body weight of 63.2 ± 9.5 kg, and mean height of 172 ± 12.5 cm.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. World Health Organization: Global report on drowning: preventing a leading killer. World Health Organization 2014.
2. UNICEF: Convention on the rights of the child. 1989; http://www.unicef-irc.org/portfolios/crc.html (data dostępu: 24.10.2016).
3. Modell JH: Prevention of needless deaths from drowning. South Med J 2010; 103(7): 650-653.
4. Borse NN, Gilchrist J, Dellinger AM et al.: CDC childhood injury report: patterns of unintentional injuries among 0-19 year olds in the United States, 2000-2006. Centers For Disease Control and Prevention, Atlanta 2008.
5. Cummings P, Mueller BA, Quan L: Association between wearing a personal floatation device and death by drowning among recreational boaters: a matched cohort analysis of United States coast guard data. Inj Prev 2011; 17(3): 156-159.
6. Linnan M, Anh LV, Cuong PV: Special series on child injury: child mortality and injury in Asia: survey results and evidence. UNICEF Innocenti Research Center, Florence, Italy 2007.
7. Peden M, McGee K, Sharma K: The injury chart book: a graphical overview of the global burden of injuries. World Health Organization, Geneva 2002.
8. Monsieurs KG, Nolan JP, Bossaert LL et al.; ERC Guidelines 2015 Writing Group: European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. Resuscitation 2015; 95: 1-80.
9. Truhlář A, Deakin CD, Soar J et al.; Cardiac arrest in special circumstances section Collaborators: European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 2015; 95: 148-201.
10. Iskrzycki L, Smereka J, Rodriguez-Nunez A et al.: The impact of the use of CPRMeter monitor on the chest compressions quality: a prospective randomized trial, cross-simulation. Kardiol Pol 2018 Jan 3. DOI: 10.5603/KP.a2017.0255.
11. Tranberg T, Lassen JF, Kaltoft AK et al.: Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest before and after introduction of a mechanical chest compression device, LUCAS-2: a prospective, observational study. Scand J Trauma Resusc Emerg Med 2015; 23: 37.
12. Esibov A, Banville I, Chapman FW et al.: Mechanical chest compressions improved aspects of CPR in the LINC trial. Resuscitation 2015; 91: 116-121.
13. Atkins DL, de Caen AR, Berger S et al.: 2017 American Heart Association Focused Update on Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2018; 137(1): e1-e6.
14. Queiroga AC, Barcala-Furelos R, Abelairas-Gómez C et al.: Cardiopulmonary resuscitation quality among lifeguards: self-perception, knowledge, and performance. Am J Emerg Med 2014; 32(11): 1429-1430.
15. Szarpak Ł, Truszewski Z, Smereka J, Czyżewski Ł: Does the use of a chest compression system in children improve the effectiveness of chest compressions? A randomised crossover simulation pilot study. Kardiol Pol 2016; 74(12): 1499-1504.
16. Truszewski Z, Szarpak L, Kurowski A et al.: Mechanical chest compression with the LifeLine ARM device during simulated CPR. Am J Emerg Med 2016; 34(5): 917.
17. Abelairas-Gómez C, Barcala-Furelos R, Szarpak Ł et al.: The effect of strength training on quality of prolonged basic cardiopulmonary resuscitation. Kardiol Pol 2017; 75(1): 21-27.
18. Idris AH, Guffey D, Aufderheide TP et al.; Resuscitation Outcomes Consortium (ROC) Investigators: Relationship between chest compression rates and outcomes from cardiac arrest. Circulation 2012; 125(24): 3004-3012.
19. Kilgannon JH, Kirchhoff M, Pierce L et al.: Association between chest compression rates and clinical outcomes following in-hospital cardiac arrest at an academic tertiary hospital. Resuscitation 2017; 110: 154-161.
20. Monsieurs KG, De Regge M, Vansteelandt K et al.: Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest. Resuscitation 2012; 83(11): 1319-1323.
21. Zou Y, Shi W, Zhu Y et al.: Rate at 120/min provides qualified chest compression during cardiopulmonary resuscitation. Am J Emerg Med 2015; 33(4): 535-538.
22. Yannopoulos D, McKnite S, Aufderheide TP et al.: Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation 2005; 64(3): 363-372.
23. Lee SH, Kim K, Lee JH et al.: Does the quality of chest compressions deteriorate when the chest compression rate is above 120/min? Emerg Med J 2014; 31(8): 645-648.
24. Akihisa Y, Maruyama K, Koyama Y et al.: Comparison of intubation performance between the King Vision and Macintosh laryngoscopes in novice personnel: a randomized, crossover manikin study. J Anesth 2014; 28(1): 51-57.
25. Kovic I, Lulic D, Lulic I: CPR PRO® device reduces rescuer fatigue during continuous chest compression cardiopulmonary resuscitation: a randomized crossover trial using a manikin model. J Emerg Med 2013; 45(4): 570-577.
26. Szarpak L, Truszewski Z, Gałązkowski R, Czyzewski L: Comparison of two chest compression techniques when using CBRN-PPE: a randomized crossover manikin trial. Am J Emerg Med 2016; 34(5): 913-915.
27. Foo NP, Chang JH, Su SB et al.: A stabilization device to improve the quality of cardiopulmonary resuscitation during ambulance transportation: a randomized crossover trial. Resuscitation 2013; 84(11): 1579-1584.
otrzymano: 2018-01-12
zaakceptowano do druku: 2018-02-02

Adres do korespondencji:
*Łukasz Iskrzycki
Zakład Ratownictwa Medycznego
Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
ul. Parkowa 34, 51-616 Wrocław
tel. +48 604-783-729
ptmk.kontakt@gmail.com

Postępy Nauk Medycznych 1/2018
Strona internetowa czasopisma Postępy Nauk Medycznych