Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Fitoterapii 2/2013, s. 85-89
*Agata Stobnicka1, Elvira Jungfer2, Małgorzata Gniewosz1
Skład i właściwości antybakteryjne świeżego soku z żurawiny wielkoowocowej (Vaccinium macrocarpon L.)
Composition and antibacterial properties of fresh cranberry (Vaccinium macrocarpon L.) juice**
1Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences, Poland
Head of Department: prof. Małgorzata Gniewosz, PhD
2Department of Nutrition and Food Sciences, University of Bonn, Germany
Head of Department: prof. Rudolf Galens
Streszczenie
Celem niniejszych badań było określenie składu i właściwości antybakteryjnych surowego soku żurawinowego (Vaccinium macrocarpon L.). Działanie soku zostało sprawdzone w stosunku do bakterii typowych dla żywności (Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922 i Salmonella enteritidis ATCC 13076). Badany sok wykazał aktywność przeciwbakteryjną wobec wszystkich szczepów testowych. Najbardziej wrażliwy na jego działanie okazał się szczep Staphylococcus aureus ATCC 25923 (MIC = 2,3 mg/ml), a najbardziej oporny szczep Salmonella enteritidis ATCC 13076 (MIC = 19,2 mg/ml). Analiza składu soku metodą HPLC-UVDAD-MSn wykazała obecność m.in. procyjanidyn (dimery, trimery, tetramery), epikatechiny, kwasu chlorogenowego, glikozydów myrycetyny i kwercetyny. Wyniki te są obiecujące i dają nadzieję na potencjalne wykorzystanie soku żurawinowego w leczeniu zatruć pokarmowych i biegunki.
Introduction
Berry fruits are rich sources of bioactive compounds such as phenolic and organic acids which may hold antimicrobial activities (1). Cranberry (Vaccinium macrocarpon L.) is a polyphenolic-rich berry fruit native to North America, but also grown and popularly used in traditional folk medicine in Europe as a treatment of microbial infections. Cranberry fruits are important and willingly eaten ingredient of the diet as well, which offers important health benefits (2-4).
Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella enteritidis are typical foodborne bacteria, which can cause food spoilage, food poisoning, stomach dysfunction and diarrhea. According to Tayel et al. (5), gastrointestinal disorders can be successfully treated with as conventional and as natural methods. However, consumers today are increasingly concerned not only about chemical residues in food, but also about side effects of chemical drugs and tend to choose natural food and natural methods of treatment, as well (6). Consequently development of natural antimicrobial compounds is on the rise. The objectives of the present research were to study (1) the antibacterial properties, including the bacteriostatic and bactericidal activity, of cranberry juice (Vaccinium macrocarpon L.) and HPLC-UVDAD-MSn analysis (2) of the juice sample.
Materials and methods
Plant material
Fruits of Vaccinium macrocarpon L. („Pilgrim”) (Ericaceae) were collected in Poland, (52.002°N, 20.937°E).
Preparing of the juice
Cranberry fruits were pressed in Omega 8006 juicer (Omega, USA). The juice was filtrated through Whatman paper No.1. The filtrate was stored in refrigerator at 4°C till further use.
Microorganisms
Reference bacterial strains were the Gram-positive (Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633) and the Gram-negative (Escherichia coli ATCC 25922, Salmonella enteritidis ATCC 13076). All tested strains were obtained from American Type Culture Collection. All tested microorganisms were subcultured into Mueller-Hinton Agar (Btl, Poland) slants and were maintained at 4°C.
Antibacterial assay
The antibacterial assay was performed using the broth macrodilution method (7). A twofold serial dilution of the juice was prepared in Mueller-Hinton Broth (MHB) (Merck, Germany). For every experiment a negative control (distilled water, medium, inoculums) was included. Each test-tube received 2 ml of the medium, 10 μl of the inoculum (106 CFU/ml) and in sequence a proper amount of the juice (2000 μl; 1000 μl; 500 μl; 250 μl; 125 μl; 60 μl; 30 μl; 15 μl). Mentioned volumes of the juice correspond with following dry mass content: 38 mg; 19 mg; 9,6 mg; 4,8 mg; 2,4 mg; 1,2 mg; 0,6 mg; 0,3 mg. The content of each tube was mixed thoroughly with tube shaker and incubated at 37°C for 24 h. Microbial growth in each test-tube was determined by observing and comparing the test-tube with the negative control. The absence of microbial growth was interpreted as an antibacterial activity. The minimum inhibitory concentration (MIC) was the lowest concentration of the juice that prevented visible growth of bacteria. Minimum bactericidal concentration (MBC) was determined by plating 100 μl from each negative and the first positive growth test-tube on Mueller-Hinton Agar (Btl, Poland). Plates were incubated at 37°C for 24 h. MBC was defined as the lowest concentration yielding 0-50 colonies on the plate.
To avoid any interference into cranberry juice, the influence of pH on bacteria’s growth was checked by adjusting pH of Mueller-Hinton Broth (MHB) (Merck, Germany), by the addition 0,1 M HCl, to the value detected by pH meter (Emerson, USA) in MIC tube. Then test-tube received 2 ml of the medium and 10 μl of the inoculum (106 CFU/ml). The content of each tube was mixed thoroughly with tube shaker and incubated at 37°C for 24 h. Microbial growth in test-tube was determined by observing and comparing the test-tube with the negative control.
Juice sample preparation with solid-phase extraction
Juice sample for analysis was prepared using the following solid-phase extraction (SPE) performed by using a Gilson ASPEC XL system (Automated Sample Preparation with Extraction Cartridges, Abimed, Langenfeld, Germany). Firstly, HR-XC SPE cartridge (500 mg, 3 ml cartridge, Macherey-Nagel, Düren, Germany) was conditioned with methanol and washed with UHQ water. The cartridge was loaded with 10 ml juice and washed with 0.1 n HCl. The polyphenols were eluted with 3 ml methanol.
HPLC-UVDAD-MSn analysis
The analysis of the phenolic compounds by HPLC-UVDAD-MSn was performed according to a method of Papagiannopolus et al. (8). The liquid chromatograph was a Summit system (Dionex, Idstein, Germany) consisting of a Degasys DG-1310 degasser (Uniflows, Tokyo, Japan), a P-580 A HPG pump, an ASI-100 T automated sample injector, an STH-585 column oven, and a UltiMate 3000 Diode Array Detector. Chromeleon software package Version 6.20 Build 531 was used for system control and data evaluation. Separation was carried out with an analytical column Nucleodur C18 Isis, 150 x 2 mm, 3 μm (Macherey-Nagel, Düren, Germany) temperated at 35°C. Solvents were UHQ water with 1 % acetic acid (v/v) (mobile phase A) and acetonitrile with 1% acetic acid (v/v) (mobile phase B). The injection volume was 10 μl and the chromatogram was monitored at 200-600 nm.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Puupponen-Pimiä R, Nohynek L, Meier C et al. Antimicrobial properties of phenolic compounds from berries. J App Microbiol 2011; 90:494-507. 2. Avorn J, Monane M, Gurwitz JH et al. Reduction of bacteriuria and pyuria after ingestion of Cranberry and Bluberry juices. J Am Med Assoc 1994; 271:751-4. 3. Nowack R. Cranberry juice – a well-characterized folk-remedy bacterial urinary tract infection. Wiener Med Wochenschr 2007; 157(13-14):325-30. 4. Howell AB. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol Nutr Food Res 2007; 51:732-7. 5. Tayel AA, El-Tras WF. Possibility of fighting food borne bacteria by Egyptian folk medicinal herbs and spices extracts. J Egypt Publ Health Assoc 2009; 84(1-2): 21-32. 6. Gould GW. Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. J Food Protect 1996; 59:82-6. 7. Tamakou JDD, Tala MF, Wabo HK et al. Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. J Ethnopharmacol 2009; 124:571-5. 8. Papagiannopolus M, Wollseifen HR, Mellenthin A et al. Identification and quantification of polyphenols in Carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem 2004; 52:3784-91. 9. Qi N, Li YQ, Liu G et al. Antibacterial activity of myricetin in vitro. West China J Pharm Sci 2008; 6:38-43. 10. Côte J, Caillet S, Doyon G et al. Antimicrobial effect of cranberry juice and extracts. Food Control 2011; 22:1413-8. 11. Wu VCH, Qiu X, Bushway A et al. Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. Food Sci Technol 2008; 41:1834-41. 12. Nogueira MCL, Oyarzabal OA, Gombas DE. Inactivation of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella in cranberry, lemon and lime juice concentrates. J Food Protec 2003; 66:1637-41. 13. Pedigo AS, Critizer FJ, Golden DA. Inactivation of Escherichia coli O157:H7 in apple juice as affected by cranberry juice concentration and holding temperature. Food Protect Trends 2007; 27:952-6. 14. Lin YT, Labbe RG, Shetty K. Inhibition of Vibrio parahaemolyticus in seafood systems using oregano and cranberry phytochemical synergies and lactic acid. Innovat Food Sci Emerg Technol 2005; 6:453-8. 15. Balandrin MF, Kjocke AJ, Wurtele ES et al. Natural plant chemicals sources of industrial and mechanical materials. Science 1985; 228:1154-60. 16. Lipson SM, Sethi L, Cohen P et al. Antiviral effects on bacteriophages and rotavirus by cranberry juice. Phytomed 2007; 14:23-30. 17. Matsushima M, Takagi A, Masui A et al. Growth inhibition action of cranberry on Helicobacter pylori. Helicobacter 2006; 11:43. 18. Lynch DM. Cranberry for prevention of urinary tract infections. Am Family Phys 2004; 70:2175-7. 19. Magariños HLE, Sahr C, Selaive SDC et al. In vitro inhibitory effect of cranberry (Vaccinium macrocarpum Ait.) juice on pathogenic microorganisms. Appl Biochem Microbiol 2008; 44(3):300-4. 20. Määttä-Riihinen KR, Kähkönen MP, Törrönen AR et al. Catechins and procyanidins in Berries of Vaccinium species and their antioxidant activity. J Agric Food Chem 2005; 53(22):8485-91. 21. Gu L, Kelm MA, Hammerstone JF et al. Screening of foods containg proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agricult Food Chem 2003; 51:7513-21. 22. Vvedenskaya IO, Rosen RT, Guido JE et al. Characterization of flavonols in Cranberry (Vaccinium macrocarpon) powder. J Agric Food Chem 2004; 52,(2):188-95. 23. Jensen HD, Krogfelt KA, Comett C et al. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccus), lingoberries (V. vitis-idaea) and blueberries (V. myrtillus). J Agricult Food Chem 2002; 50:6871-4. 24. Häkkinen S, Heinonen M, Kärenlampi S et al. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Inter 1999; 32(5):345-53.
otrzymano: 2013-01-23
zaakceptowano do druku: 2013-02-05

Adres do korespondencji:
*Agata Stobnicka
Department of Biotechnology, Microbiology and Food Evaluation Warsaw University of Life Sciences
ul. Nowoursynowska 159, 02-776 Warszawa
tel.: +48 (22) 593-76-58, fax: + 48 (22) 593-76-81
e-mail: agatastobnicka@gmail.com

Postępy Fitoterapii 2/2013
Strona internetowa czasopisma Postępy Fitoterapii