Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Zastanawiasz się, jak wydać pracę doktorską, habilitacyjną lub monografię? Chcesz dokonać zmian w stylistyce i interpunkcji tekstu naukowego? Nic prostszego! Zaufaj Wydawnictwu Borgis – wydawcy renomowanych książek i czasopism medycznych. Zapewniamy przede wszystkim profesjonalne wsparcie w przygotowaniu pracy, opracowanie dokumentacji oraz druk pracy doktorskiej, magisterskiej, habilitacyjnej. Dzięki nam nie będziesz musiał zajmować się projektowaniem okładki oraz typografią książki.

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Nauk Medycznych 7/2013, s. 514-518
*Eberhard Ritz
Kwas moczowy – nerkowy i nienerkowy czynnik ryzyka
Uric acid – a renal and non-renal risk factor
Nephrology Section, Heidelberg University Hospital, Heidelberg, Germany
Streszczenie
Niedobór urykazy u człowieka sprawia, że produktem końcowym przemiany zasad purynowych jest nie alantoina, lecz kwas moczowy. Ten metabolit był przedmiotem intensywnych badań głównie u chorych z wrodzoną lub nabytą skazą dnawą. W ostatnich latach wykazano, że kwas moczowy jest ważnym winowajcą poważnych powikłań sercowo-naczyniowych (nadciśnienie tętnicze, miażdżyca naczyń), ale i nerkowych (przyspieszenie progresji różnych nefropatii) i metabolicznych (aberracje gospodarki węglowodanowej). Powyższe fakty sprawiły, że zahamowanie syntezy kwasu moczowego stało się ważną tarczą terapeutyczną. Zainteresowanie kwasem moczowym wzrosło jeszcze bardziej, kiedy wykazano występowanie metabolicznego jego związku z fruktozą uważaną za związek kardio- i waskulotoksyczny.
Przedstawiona praca jest podsumowaniem współczesnej wiedzy dotyczącej patogenetycznych i leczniczych aspektów urykemii.
Summary
As human beings are deprived of uricase, the final metabolite of purines is uric acid and not allantoin. This metabolite was the subject of scientific interest predominantly in patients with heriditary or acquired forms of gout respectively. In the last years uric acid became an important pathogenetic factor involved not only in accelerating progression of different acute and chronic nehropathies but also as a cardiovascular toxin involved in the pathogenesis of arterial hypertension, vascular injury, heart failure and abnormalities of carbohydrate metabolism. These facts were the reason why inhibition of uric acid synthesis became an important therapeutic target. This interest rose even more when the presence of a metabolic link between uric acid and fructose (which is assumed to be a cardiovascular toxin) was proven.
This review is summarizing our contemporary knowledge about uric acid as a culprit of cardiovascular and renal events and as a target of therapeutic intervention.
What is the evidence for uric acid as a renal risk factor?
Hyperuricemia may be the result of uric acid overproduction or diminished renal uric acid excretion (and as recently suggested apart from renal perhaps also non-renal urate excretion) (1).
Overproduction may be the result of genetic disease, e.g. HGPRT mutation (hypoxanthine-guanine phosphoribosyltransferase) or PRPPS mutations (phosphoribosyl-pyrophosphate synthase). Acquired conditions are myeloproliferative or lymphopoliferative disease and most frequently dietary causes interacting with genetic background.
Diminished renal excretion of urate may be caused by primary nephropathies causing renal failure or be caused by genetic variants of urate transporters; recent genome-wide association analyses (Köttgen, Nature Genetics, in press) had identified a number of loci coding for tubular reabsorption which are associated with elevated serum urate concentrations.
In the past lead intoxication was an important cause of elevated urate concentration, but this has virtually disappeared in Mid Europe.
Cases of familial hereditary disease causing hyperuricemia, e.g. familial juvenile hyperuricemic nephropathy type 1 (FJHN2), medullary cystic renal disease type 2 (MCKD2) or glomerulocystic renal disease are associated with progressive renal failure. There is currently uncertainty whether in these genetic diseases caused by urate transporter mutations Allopurinol causes less progression of renal function by reducing serum uric acid concentration (2, 3).
Urate and chronic kidney disease (CKD)
In the past, there had been discussions whether elevated serum uric acid concentration in chronic kidney disease (CKD) is pathogenetically irrelevant or whether it contributes to progressive reduction of renal function. The causal function of uric acid in mediating progression of CKD had been clearly documented in the remnant kidney model by Kang (4). One recently identified mechanism is uric acid induced epithelial to mesenchymal transition (Ryu, Am. J. Physiol. Renal, 2013 (e-pub).
Today, there is also increasing clinical evidence that uric acid concentrations (even within the range of normal concentrations) actively promote loss of renal function. Therefore current studies evaluate whether uric acid is a novel target for therapeutic intervention. On the one hand there is strong observational evidence that urate is a factor contributing to onset and progression of CKD: for instance in a recent 10.2 year follow-up study uric acid was a significant risk factor for CKD, at least in males, for individuals in the fourth quartile of serum uric acid concentration the risk of CKD was significantly (p < 0.0001) increased by a factor of 2.1 (5). Similarly a study in Taiwan (6) – confirmed in Thailand (Satirapoj, Nephrology, Carlton; in press) – showed that the risk of onset of chronic kidney disease is significantly increased by a factor of 1.03 (95% CI 1.1-1.6) per > 1 mg/dl higher serum uric acid concentration. In a health check-up study by Yamada (7) the onset of CKD was progressively higher from the first to the fourth quartile of serum urate concentration (1.00; 1.85; 2.57; 3.54) in males and in females as well. In cross-sectional studies, uric acid concentration is also correlated to the presence of CKD (8) and furthermore an increase of plasma uric acid concentration is correlated to the decrease of renal function, i.e. progression of CKD as shown in a prospective cohort study; in the 4th quartile, the adjusted odds ratio was higher by a factor of 2.86 and uric acid increase > 1 mg/dl was associated with a risk of CKD higher by 1.63 (CI 1.25-2.12) (9).
Apart from all-cause CKD, hyperuricemia has also been identified as a risk factor for progression of primary kidney diseases, e.g. IgA glomerulonephritis (10). The role of uric acid concentration in the progression of IgA-GN was underlined by a biopsy study: no deterioration of renal function was seen in the patients with a serum uric acid concentration < 7.5 mg/dl (11). In line with this observation indirect evidence suggests renal vasoconstriction triggered by uric acid in patients with IgA glomerulonephritis (12).
Furthermore a recent kidney biopsy study in 167 patients with CKD documented a significant correlation between tertiles of serum uric acid concentration and hyalinosis as well as wall thickening (13).
Similarly, serum uric acid concentration has been shown to predict the onset of diabetic nephropathy in individuals with type 1 diabetes (14) and was even a predictor of the onset type 2 diabetes in the off-spring cohort of the Framingham heart study (15). This has also been documented in a 15-year follow-up study (1986-2001) by Krishnan (16): individuals with a serum uric acid concentration > 7 mg/dl had a hazard ratio (HR) of 1.94 to develop diabetes, HR 1.46 to develop insulin resistance, and HR 2.15 to develop pre-diabetes. In a 5-year follow-up study on 449 type 2 – diabetic individuals with normal renal function and no proteinuria at baseline Zoppini (17) documented that hyperuricemia, defined as > 7 mg/dl in men and > 6.5 mg/dl in women, increased the odds ratio of developing kidney disease by a factor of 2.55 (CI 1.71-3.85; p < 0.001).
An adverse effect of serum uric acid on kidney damage has also been documented in recipients of kidney transplants (18) and in patients at risk of acute kidney injury: Lapsia (19) found that progressively higher serum uric acid concentrations were associated with a progressively higher incidence of AKI.
It deserves mentioning that recent evidence documents that elevated uric acid concentration increases the risk of acute kidney injury (19, 20).
Urate nephropathy
Classical urate nephropathy was quite common in the distant past, but in Europe it has currently virtually disappeared. It is characterized by amorphous or spindle-shaped uric acid deposits surrounded by inflammatory infiltrates. This has been reproduced in animal experiments (21): infusion of uric acid caused an inflammatory reaction in the kidney with activation of the tubular NF?B pathway.
Specific causes of elevated uric acid increase
Gout is one specific cause of renal failure as shown back in the 19th century. This form of renal disease has been brilliantly been described in the classical review of Barlow and Beilin (22). Fortunately this form of kidney disease has nowadays become very rare in Middle Europe.
Historically another frequent cause of CKD was lead intoxication. While in Mid Europe, stringent safety rules have led to virtual disappearance of clinically relevant lead intoxication, Krishnan (23) showed that in patients with gout, in the US moderately elevated serum lead concentrations are seen even today, implicating that there is no such a thing as a safe level of exposure to lead. It is wise to be vigilant and think of lead intoxication in unclear cases as shown by the recent observation of lead intoxication from lead contaminated marihuana (24).

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp tylko do jednego, POWYŻSZEGO artykułu w Czytelni Medycznej
(uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony)

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem , należy wprowadzić kod:

Kod (cena 19 zł za 7 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

 

 

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 49 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

otrzymano: 2013-01-18
zaakceptowano do druku: 2013-02-21

Adres do korespondencji:
*Eberhard Ritz
Department Internal Medicine Division Nephrology, Nierenzentrum
Im Neueheimer Feld 162, D-69120 Heidelberg
tel.: +49 6221-601-705, +49 6221-189-976
fax: +49 6221-603-302
e-mail: prof.e.ritz@t-online.de

Postępy Nauk Medycznych 7/2013
Strona internetowa czasopisma Postępy Nauk Medycznych