Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Nauk Medycznych 6/2014, s. 389-394
*Brygida Adamek1, Joanna Katarzyna Strzelczyk1, Marzena Zalewska-Ziob1, Janusz Kasperczyk2, Grażyna Spausta1, Michał Kukla3, Marek Hartleb3, Andrzej Wiczkowski1
Stężenie naczyniowo-śródbłonkowego czynnika wzrostowego (VEGF) w tkance wątrobowej w późniejszych etapach regeneracji wątroby szczura poddanej działaniu interferonu α2b
Vascular endothelial growth factor (VEGF) liver tissue concentration in delayed stages of rat liver regeneration upon interferon α2b influence
1Chair and Department of General Biology, Medical University of Silesia, Katowice
Head of Department: prof. Andrzej Wiczkowski, MD, PhD
2Chair and Department of Medicine and Environmental Epidemiology, Medical University of Silesia, Katowice
Head of Department: prof. Jadwiga Jośko-Ochojska, MD, PhD
3Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice
Head of Department: prof. Marek Hartleb, MD, PhD
Streszczenie
Wstęp. Uważa się, że naczyniowo-śródbłonkowy czynnik wzrostowy (ang. vascular endothelial growth factor – VEGF) odgrywa istotną rolę w regeneracji wątroby, natomiast interferon α2b (IFN-α2b) wywiera na ten proces wpływ hamujący. VEGF wzmaga proliferację komórek śródbłonka zatok (ang. sinusoidal endothelial cells – SECc) in vitro, ale znaczenie tych oddziaływań w przebiegu regeneracji wątroby in vivo nie jest określone.
Cel pracy. Oznaczono stężenia VEGF w tkance wątrobowej szczura w późniejszej fazie regeneracji, zarówno podczas naturalnego przebiegu tego procesu, jak i po podaniu IFN-a2b.
Materiał i metody. 45 trzymiesięcznych samców szczurów rasy Wistar podzielono na trzy grupy. Pierwsza grupa otrzymała podskórnie IFN-α2b 24 godziny przed częściową hepatektomią, a następnie 24 godziny po niej (ang. partial hepatectomy – PH). Ten sam schemat zastosowano w grupie drugiej, która otrzymała dwukrotnie podskórną iniekcję 0,5 ml 0,9% NaCl. Trzecia grupa otrzymała dwie dawki IFN-α2b w odstępie 48 godzin, ale została poddana zabiegowi pozorowanemu. Szczury uśmiercano w podgrupach po pięć sztuk, kolejno w 48., 72. i 96. godzinie po przeprowadzonym zabiegu. Fragmenty tkanki wątrobowej pobierano w trakcie hepatektomii oraz podczas autopsji. Stężenia VEGF w homogenatach wątrób oznaczano metodą ELISA.
Wyniki. Stężenia VEGF przed i po PH nie różniły się, a podawany IFN-α2b nie miał na nie istotnego wpływu w analizowanych punktach czasowych.
Wnioski. Szlak VEGF nie ulega aktywacji w wątrobie szczura pomiędzy 48. a 96. godziną po częściowej hepatektomii, a oddziaływanie IFN-α2b nie ma wpływu na jego poziomy tkankowe ani w prawidłowej, ani w regenerującej wątrobie.
Summary
Introduction. Vascular endothelial growth factor (VEGF) is postulated to play an important role in liver regeneration and interferon α2b (IFN-α2b) is believed to inhibit this process. VEGF enhances proliferation of sinusoidal endothelial cells (SECc) in vitro, but its significance on liver regeneration in vivo is not well defined.
Aim. Investigation of the VEGF concentration in rat liver tissue in delayed stage of hepatic regeneration in baseline conditions and after IFNα2b administration.
Material and methods. The 45 three-months-old male Wistar rats were divided into three groups. The first group was injected subcutaneously with IFN-α2b 24 h before and 24 h after partial hepatectomy (PH). The similar schedule was realized in the second group injected with 0.5 ml of 0.9% NaCl. The third group underwent sham-operation and was given two doses of IFN-α2b with the 48 h interval. Rats were sacrificed in subgroups of five at 48, 72 and 96 h after surgery. The liver samples were obtained during surgery or autopsy. VEGF concentration was assayed in tissue homogenates with ELISA method.
Results. VEGF concentrations were not different before and after PH and IFN-α2b had no significant influence on VEGF in analyzed time points.
Conclusions. VEGF pathway is not activated in rat liver between 48 and 96 h post PH and administration of IFN-α2b has no impact on its tissue level neither in intact nor regenerating liver.
INTRODUCTION
Liver regeneration after the loss of effective hepatic mass is fundamental event in case of hepatic injury. Studies with hepatic resections showed that the regenerative response is proportional to the amount of liver removed (1, 2). The events triggered by partial loss of liver tissue involve mostly proliferation of hepatocytes, but also regeneration of all non-parenchymal mature cell populations. Hepatocyte proliferation starts in the periportal zone, continuing during next 36 to 48 hours towards pericentral areas of the lobules (3). The proliferation of non-parenchymal cells and the synthesis of new matrix are required for whole liver reconstitution (4, 5). Hepatic stellate cells (HSC), Kupffer cells and sinusoidal endothelial cells (SECs) enter cell cycle about 24 hours later than hepatocytes with a peak of DNA synthesis set at 48 h or later (6). Cellular sequential proliferations result in the formation of avascular liver tissue islands, with subsequent migration of the SECs into clusters of newly repopulated hepatocytes (7). Remodeling of regenerative liver architecture involves the formation of a complex network of sinusoids (8, 9). The stimuli to this process remain relatively unexplored.
Vascular endothelial growth factor (VEGF) is the best known angiogenic factor with documented growth-promoting effect on endothelial cells (10). VEGF is also a survival factor for SECs, as well as an inductor of their fenestrated phenotype important for microvascular permeability (11). There are several distinct isoforms of this homodimeric heparin-binding glycoprotein, which are the products of alternate splicing of the same gene (12, 13). VEGF binds to two receptor-type tyrosine kinases, Flt-1 (VEGF receptor-1) and KDR/Flk 1 (VEGF receptor-2), interacting with a family of co-receptors and membrane proteins (neurophilins), which do not contain a tyrosine kinase domain (10, 14).
Partial hepatectomy (PH), in which two-thirds (70%) of the liver is removed, is the widely accepted experimental rat model to study mechanisms of liver regeneration (15-19). However, the knowledge on regulation of sinusoidal net rebuilding during liver regeneration in partially hepatectomized rat is largely missing (20). SECs do not initiate DNA synthesis until 48 to 72 hours after resection, starting to divide approximately 96 hours post PH, with ongoing proliferation lasting at least 8 days following PH (6, 21). Assy et al. showed that serum levels of VEGF do not change significantly and remain on physiological levels following 70% PH (22). This finding encourages investigation of local behavior of VEGF concentrations.
The interferons (IFNs) are abundantly expressed cytokines, which show antiviral, immunomodulatory, growth-inhibitory and anti-fibrogenic activities (23-26). Moreover, interferon α (IFNα) is listed among angiogenesis inhibitors (27, 28). It is postulated, that activation of more than one signaling pathway is required for the generation of different effects of IFNs as no single signaling cascade is sufficient to reach any given biological end-point (29). To date, it has been not established if IFN administration has any impact on VEGF concentration within regenerating liver.
AIM
The purpose of this study was to investigate the hepatic concentration of VEGF in partially hepatectomized rats without pharmacological intervention and under influence of IFNα.
MATERIAL AND METHODS
Animal experiment
The 45 adult male Wistar rats (300-330 g) were maintained on rat chow and water under standard conditions with a 12-hour light-dark cycle. According to the study protocol they were divided into three groups, 15 of animals each. The first group (IFN/H) was injected subcutaneously with 0.5 ml IFN-α2b (Intron A, Shering-Plough, 5 MU/100 ml 0.9% NaCl) and 24 hours later the 2/3 PH was conducted. After next 24 h the second IFN-α2b dose was administered. The second group (IFN/O) was injected with the same doses of IFN-α2b and was sham operated between the doses. Control rats (NaCl/H) underwent PH and received an identical volume (0.5 ml) of isotonic saline in the same time intervals in relation to PH. Injections and surgery (anesthesia: 50 mg/kg of ketamine given intraperitoneally) were carried out between 9.00-11.00 a.m. to minimize the influence of circadian variations. Rats were sacrificed in groups of five 48, 72 and 96 h after PH. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, as reflected by the a priori approval (no. 1/02; 19.02.2002) of the Local Ethics Commission for Animal Experiments of the Medical University of Silesia.
Samples of excised livers in IFN/H and NaCl/H groups were marked with “1”, and liver samples in IFN/O group obtained during autopsy were marked with “2”. The study design is shown in figure 1.
↓↓ →24h → PH (IFN/H/1)
↓↓ →24h → SO (IFN/O)
↓↓ →24h → PH (NaCl/H/1)
24h → ↓↓ → 24h
24h → ↓↓ → 24h
24h → ↓↓ → 24h
→ S (IFN/H/2)
→ S (IFN/O/2)
→ S (NaCl/H/2)
48h
    
↓↓ →24h → PH (IFN/H/1)
↓↓ →24h → SO (IFN/O)
↓↓ →24h → PH (NaCl/H/1)
24h → ↓↓ → 48h
24h → ↓↓ → 48h
24h → ↓↓ → 48h
→ S (IFN/H/2)
→ S (IFN/O/2)
→ S (NaCl/H/2)
72h
    
↓↓ →24h → PH (IFN/H/1)
↓↓ →24h → SO (IFN/O)
↓↓ →24h → PH (NaCl/H/1)
24h → ↓↓ → 72h
24h → ↓↓ → 72h
24h → ↓↓ → 72h
→ S (IFNH/2)
→ S (IFN/O/2)
→ S (NaCl/H/2)
96h
Fig. 1. The experiment schedule.
IFN/H – interferon α2b-injected/hepatectomized animals; IFN/O – interferon α2b-injected/sham-operated animals, NaCl/H – saline injected/hepatectomized animals; ? – IFN/saline injections, PH – partial hepatectomy, SO – sham operation, S – sacrification; “1” – tissue samples obtained during surgery; “2” – tissue samples obtained during autopsy; 48h, 72h, 96h – hours post surgery
Homogenization and total protein concentration
Weighed samples of rat liver (100 mg) were homogenized using a PRO 200 homogenizer (PRO Scientific Inc, USA) at 10 000 RPM in nine volumes of phosphate-buffered saline solution (PBS without Ca and Mg, BIOMED, Poland) containing 0.5% Triton X-100 (Sigma-Aldrich, USA). Then homogenates were centrifuged at 12 000 RPM for 15 minutes at 4°C, and supernatants were divided into appropriate portions and frozen at – 80°C until required for further surveys.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Michalopoulos GK, DeFrances MC: Liver regeneration. Science 1997; 276: 60-66.
2. Taub R: Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 2004; 5: 36-47.
3. Michalopoulos GK: Liver regeneration. J Cell Physiol 2007; 213: 286-300.
4. Diehl AM: The role of cytokines in hepatic regeneration. Curr Opin Gastroenterol 1997; 13: 525-533.
5. Kim TH, Mars WM, Stolz DB et al.: Extracellular matrix remodeling at the early stages of liver regeneration in the rat. Hepatology 1997; 26: 896-904.
6. Malik R, Selden C, Hodgson H: The role of non-parenchymal cells in liver growth. Semin Cell Dev Biol 2002; 13: 425-431.
7. Martinez-Hernandez A, Amenta PS: The extracellular matrix in hepatic regeneration. FASEB J 1995; 9: 1401-1410.
8. Sato T, El-Assal ON, Ono T et al.: Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver. J Hepatol 2001; 34: 690-698.
9. Thung SN, Gerber MA: Liver. [In:] Sternberg SS (ed.): Histology for pathologists. Raven Press 1992: 625-638.
10. Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med 2003; 9: 669-676.
11. Ferrara N: Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001; 280: C1358-C1366.
12. Salcedo X, Medina J, Sanz-Cameno P et al.: Review article: angiogenesis soluble factors as liver disease markers. Aliment Pharmacol Ther 2005; 22: 23-30.
13. Ogawa S, Oku A, Sawano A et al.: A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentialy utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 1998; 273: 31273-31282.
14. Sato Y, Kanno S, Oda N et al.: Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Ann NY Acad Sci 2000; 902: 201-205.
15. Higgins GM, Anderson RM: Experimental pathology of the liver. I. Restoration of liver of the white rat following partial surgical removal. Arch Pathol 1931; 12: 186-202.
16. Diehl AM, Rai RM: Regulation of signal transduction during liver regeneration. FASEB J 1996; 10: 215-227.
17. Fausto N, Campbell JS, Riehle KJ: Liver regeneration. Hepatology 2006; 43: 45-53.
18. Fausto N, Webber EM: Liver regeneration. [In:] Arias IM, Boyer JL, Fausto N et al. (eds.): The liver: biology and pathobiology. 3rd ed., Raven Press, San Diego 1994: 1059-1084.
19. Mangnall D, Bird NC, Majeed AW: The molecular physiology of liver regeneration following partial hepatectomy. Liver International 2003; 23: 124-138.
20. Zimmermann A: Liver regeneration: the emergence of new pathways. Med Sci Monit 2002; 8: RA53-RA63.
21. Martinez-Hernandez A, Delgado FM, Amenta PS: The extracellular matrix in hepatic regeneration. Localization of collagen types I, III, IV, laminin and fibronectin. Lab Invest 1991; 64: 157-166.
22. Assy N, Spira G, Paizi M et al.: Effect of vascular endothelial growth factor on hepatic regenerative activity following partial hepatectomy in rats. J Hepatol 1999; 30: 911-915.
23. Baron S, Tyiring SK, Fleischmann WR et al.: The interferons. Mechanisms of action and clinical applications. JAMA 1991; 266: 1375-1383.
24. Sakaida I, Nagatomi A, Hironaka K et al.: Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic C after interferon therapy. Am J Gastroenterol 1999; 94: 489-496.
25. Li Y, Srivastava KK, Platanias LC: Mechanisms of type I interferon signaling in normal and malignant cells. Arch Immunol Ther Exp 2004; 52: 156-163.
26. Thomas H, Foster G, Platis D: Mechanisms of action of interferon and nucleoside analogues. J Hepatol 2003; 39: 93-98.
27. Kajdaniuk D, Marek B, Borgiel-Marek H et al.: Vascular endothelial growth factor (VEGF). Part 1: in physiology and pathophysiology. Endokrynol Pol 2011; 62: 444-455.
28. Rosewicz S, Detjen K, Scholz A et al.: Interferon-α: regulatory effects on cell cycle and angiogenesis. Neuroendocrinology 2004; 80 (suppl. 1): 85-93.
29. Platanias LC: Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat Rev Immunol 2005; 5: 375-386.
30. Kukla M: Angiogenesis: a phenomenon which aggravates chronic liver disease progression. Hepatol Int 26.07.2012; DOI 10.1007/s12072-012-9391-2.
31. Kukla M, Gabriel A, Waluga M et al.: Angiogenesis in chronic viral hepatitis. [Angiogeneza w przewlekłym wirusowym zapaleniu wątroby]. Gastroenterol Pol 2009; 16: 304-309.
32. Ciupińska-Kajor M, Hartleb M, Kajor M et al.: Hepatic angiogenesis and fibrosis are common features in morbidly obese patients. Hepatol Int 29.11.2011. DOI 10.1007/s12072-011-9320-9.
33. Arai M, Mochida S, Ohno A et al.: Blood coagulation equilibrium in rat liver microcirculation as evaluated by endothelial cell thrombomodulin and macrophage tissue factor. Thromb Res 1995; 80: 113-123.
34. Ding B-S, Nolan DJ, Butler JM et al.: Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 2010; 468: 310-315.
35. Shimizu H, Miyazaki M, Wakabyashi Y et al.: Vascular endothelial growth factor secreted by replicating hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial hepatectomy in rats. J Hepatol 2001; 34: 683-689.
36. Mochida S, Ishikawa K, Inao M et al.: Increased expression of vascular endothelial growth factor and its receptors, flt-1 and KDR/flk-1, in regenerating rat liver. Biochem Biophys Res Commun 1996; 226: 176-179.
37. Gao Z, McAlister VC, Williams GM: Repopulation of liver endothelium by bone-marrow-derived cells. Lancet 2001; 357: 932-933.
38. Yamane A, Seetharan L, Yamaguchi S et al.: A new communication system between hepatocytes and sinusoidal endothelial cells in liver through vascular endothelial growth factor and Flt tyrosine kinase receptor family (Flt-1 and KDR/Flk-1). Oncogene 1994; 9: 2683-2690.
39. Yancopoulos GD, Davis S, Gale NW et al.: Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242-248.
40. Shergill U, Das A, Langer D et al.: Inhibition of VEGF- and NO-dependent angiogenesis does not impair liver regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298: 1279-1287.
41. Taniguchi E, Sakisaka S, Matsuo K et al.: Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats. J Histochem Cytochem 2001; 49: 121-130.
42. Mochida S, Ishikawa K, Toshima K et al.: The mechanisms of hepatic sinusoidal endothelial cell regeneration: a possible communication system associated with vascular endothelial growth factor in liver cells. J Gastroenterol Hepatol 1998; 13 (suppl.): S1-5.
43. Wong S, Gauthier T, Kaita KD et al.: The differential effects of three forms of interferon alfa on hepatic regeneration after partial hepatectomy in the rat. Hepatology 1995; 21: 883-886.
44. Theocharis SE, Margeli AP, Tsokos MG: Alpha 2b-interferon inhibits rat liver regeneration after partial hepatectomy without affecting thymidine kinase activity. J Lab Clin Med 1995; 125: 588-596.
45. Favre C, Carnovale CE, Monti JÁ et al.: Inhibition by interferon α-2b of rat liver regeneration: effect on ornithine decarboxylase and total protein synthesis. Biochem Pharmacol 2001; 61: 1587-1593.
46. Lanford RE, Guerra B, Lee H et al.: Genomic response to interferon-alpha in chimpanzees: implications of rapid downregulation for hepatitis C kinetics. Hepatology 2006; 43: 961-972.
otrzymano: 2014-03-05
zaakceptowano do druku: 2014-05-12

Adres do korespondencji:
*Brygida Adamek
Chair and Department of General Biology Medical University of Silesia
ul. Jordana 19, 41-808 Zabrze
tel. +48 (32) 272-21-71
badamek@sum.edu.pl

Postępy Nauk Medycznych 6/2014
Strona internetowa czasopisma Postępy Nauk Medycznych