Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Nowa Stomatologia 4/2017, s. 192-201 | DOI: 10.25121/NS.2017.22.4.192
Agnieszka Kozubska1, *Joanna Szczepańska2
Dental aberrations in children and adolescents with osteogenesis imperfecta**
Zaburzenia uzębienia u dzieci i młodzieży w przebiegu osteogenesis imperfecta**
1Doctoral Studies, Department of Paediatric Dentistry, Medical University of Łódź
Head of Department: Professor Joanna Szczepańska, MD, PhD
2Department of Paediatric Dentistry, Medical University of Łódź
Head of Department: Professor Joanna Szczepańska, MD, PhD
Streszczenie
Osteogenesis imperfecta (OI) znana jako wrodzona łamliwość kości, jest dziedziczną chorobą tkanki łącznej i charakteryzuje się także zaburzeniami w uzębieniu, takimi jak: dentinogenesis imperfecta (DI), wady zgryzu, agenezja oraz występowaniem zębów zatrzymanych.
Celem tego artykułu było opisanie zaburzeń uzębienia u dzieci z OI.
Osteogenesis imperfecta cechują charakterystyczne objawy ogólne, takie jak: zwiększona łamliwość kości, niski wzrost, niebieskie twardówki, zaburzenia słuchu, wiotkość stawów oraz występowanie zaburzeń w jamie ustnej, np. w postaci dentinogenesis imperfecta. Sillence wyróżnił cztery typy wrodzonej łamliwości kości.
W 2004 roku klasyfikacja została dodatkowo rozszerzona o typy V, VI i VII OI. U pacjentów dotkniętych tym schorzeniem mogą występować dentinogenesis imperfecta, zęby zatrzymane, agenezja, zębiniaki oraz wady zgryzu. Istnieją trzy typy dziedzicznego niedorozwoju zębiny (DI), przy czym z wrodzoną łamliwością kości związany jest typ I. Zęby cechują się nieprawidłową barwą, utratą szkliwa, starciem, krótkimi korzeniami, beczułkowatym kształtem koron z zaznaczonym przewężeniem przyszyjkowym i obliteracją komory miazgi. Uzębienie mleczne wykazuje cięższe zaburzenia w porównaniu z uzębieniem stałym. W związku z powyższym niezwykle istotne jest prawidłowe leczenie zaburzeń uzębienia związanych z występowaniem dentinogenesis imperfecta, co poprawi jakość życia pacjentów.
Summary
Osteogenesis imperfecta (OI) known as brittle bone disease is an inherited disorder of connective tissue, and is characterized also by dental manifestations like dentinogenesis imperfecta (DI), malocclusion, agenesis and impaction.
The purpose of this article is to describe dental aberrations in children with OI.
Osteogenesis imperfecta is characterized by systemic and dental manifestations such as bone fragility, repeated bone fractures, short stature, blue sclerae, hearing loss, joint laxity and dentinogenesis imperfecta. Sillence originally classified four types of brittle bone disease, but the classification was extended with three additional types of OI in 2004. Patients with OI may show dental aberrations such as dentinogenesis imperfecta, impaction, agenesis, denticles and malocclusion. DI is a hereditary disorder in dentine formation. There are three types of DI, type I is associated with OI. The teeth are characterized by discolouration, loss of enamel, attrition, short roots, bulbous crowns with marked cervical constriction and pulpal obliterations. Primary dentition is more severely affected than permanent teeth. It is important to restore dental defects associated with DI to improve the patient’s quality of life.
Introduction
Osteogenesis imperfecta (OI) is an inherited disorder of the connective tissue, whose incidence ranges from 1 in 5,000 to 1 in 20,000 live births, with no racial or ethnic predilection (1, 2). The disorder arises from mutations in the genes encoding type I collagen. Many organs are affected due to the widespread presence of this protein in the human body. OI may also be caused by mutations in other genes, including CRTAP, LEPRE 1 and PPIB (3). Patients experience bone fractures, blue discoloration of the sclera, hearing disorders, joint laxity and dentine aberrations. The common dental symptoms include: congenital hypoplasia of the dentine (dentinogenesis imperfecta – DI), malocclusion, ectopic position of the teeth, or impacted teeth. Type I DI is associated with OI, whereas types II and III occur independently. Although the disease affects primary and permanent dentition, changes are more frequent and more severe in primary teeth.
The aim of this paper is to describe the anomalies in the dentition of children with osteogenesis imperfecta.
Based on the available literature, the article reviews the state of knowledge concerning the possible dental abnormalities in patients with osteogenesis imperfecta.
Osteogenesis imperfecta
Osteogenesis imperfecta is a hereditary disorder of the connective tissue. It is caused by mutations in the genes (COL1A1 and COL1A2) encoding two polypeptides (proalfa-1 and proalfa-2) of type I procollagen, which results in quantitative or qualitative changes in the synthesis of collagen type I. So far, more than 250 different mutations of COL1A1 and COL1A2 genes have been recognized, possibly accounting for the observed differences in the phenotype of OI (1). Type I fibrillar collagen is the most common form of collagen in the body, and it constitutes 95% of bone collagen. Therefore, the most frequently observed features of OI are changes in the bone structure. However, in all tissues that are rich in type I collagen, such as ligaments, tendons, skin, sclera, teeth and the inner ear, some anomalies may occur (1). Patients may present with increased bone fragility, blue sclera, growth deficiency, hearing loss, bone pain, joint laxity and dentinogenesis imperfecta. Repeated fractures of the femur and spine occur more frequently in young children (4). A triangular shape of the face with a broad forehead is also typical of the condition (5). Platelet function disorders and small vessel fragility associated with OI result in prolonged bleeding. Patients with osteogenesis imperfecta can also demonstrate heat intolerance, increased body temperature, an increased respiratory and resting heart rate (1).
In 1979, osteogenesis imperfecta was classified into four main types by Van Dijk and Sillence (3). The initial classification, based on clinical and radiological symptoms as well as inheritance pattern is still used. Due to the occurrence of osteogenesis imperfecta resulting from mutations in genes other than COL1A1/2, Rauch and Glorieux published in 2014 an extended classification, distinguishing seven OI types (6). In 2007, Cabral et al. additionally described Type VIII, related to a mutation in LEPRE1 gene (7). The most recent classification of osteogenesis imperfecta, introduced by INCDS in 2010, distinguishes five OI types, acknowledging the IV main types and adding a fifth one (tab. 1) (3). It also introduces further disease subtypes depending on the type of the gene mutation involved (3). Type I OI is the most common one (60-70% of all patients with OI), type III is diagnosed in 20% of patients with OI, and type IV – in only in 10% of the patients (8). Type I – the mildest OI form, is caused by reduced production of type I collagen. Other types of OI, the lethal type II accompanied by fractures in utero, as well as type III and type IV are the result of both qualitative and quantitative disturbances in the synthesis of type I collagen (4). Types I and III are further divided into subgroups with or without dentinogenesis imperfecta (9). According to Patterson et al., patients with type I OI accompanied by DI are at a greater risk of fractures at birth than those without DI (10). They are also more prone to bone fractures and severe skeletal deformations (3). Types I and IV are characterized by similar presentation, including a lack of prolonged bleeding, bone pains or cardiac problems (4).
Tab. 1. 2010 classification of osteogenesis imperfecta
Type SeverityCharacteristicsDIInheritanceGenes
IMild – bone fragility
– low bone mass
– rare spinal and long bone deformations
– normal stature/stature slightly below average
– blue sclerae
– deafness
-/+ADCOL1A1
COL1A2
IISevere, lethal– multiple fractures
– skeletal deformations
– low birth weight
– neuropathologies
– pulmonary insufficiency
– congestive heart failure
– pneumonia
 AD
 
AR
COL1A1
COL1A2
CRTAP
LEPRE1
PPIB
IIIProgressively deforming
 
– multiple fractures
– skeletal deformations
– short stature
– severe scoliosis
– grey sclerae
+AD
 
AR
COL1A1
COL1A2
BMP1
CRTAP
FKBP10
LEPRE1
PLOD2
PPIB
SERPINF1
SERPINH1
TMEM38B
WNT1
CREB3L1
IVModerate– multiple fractures
– osteoporosis
– long bone and spinal deformities of various severity
– normal sclerae
+/-AD
 
 
AR
 
 
XL
COL1A1
COL1A2
WNT1
CRTAP
PPIB
SP7
PLS3
VModerate– dislocation of the radial head
– normal sclerae
– calcification of interosseous membranes
-ADIFITM5
Medium body height, dislocation of the radial head, white sclera and hyperplastic callus formation are characteristic for OI type V. Type VI is characterized by the presence of scoliosis, moderate growth and white sclera, as well as a lack of COL1A1/2 gene mutation (11). Type VII is inherited in a recessive manner, and has been described only in the indigenous American population of northern Quebec. It is characterized by bone fragility, disproportions in the length of the proximal limbs – the arms and thighs (rhizomelia), and coxa vara. The latter is a reduction of the angle between the head and the shaft of the femur to less than 120 degrees, resulting with a shortened lower limb. Types V, VI and VII are described as OI-resembling syndromes, since although patients demonstrate phenotypes similar to osteogenesis imperfecta, such as increased bone fragility and short stature, no mutations in the genes encoding type I collagen are observed (1). OI symptoms tend to exacerbate in males over 50 years old and postmenopausal women (4). Brunstein and Mautner notes that although the general mortality rate in OI ranges from 70 to 80%, it tends to be lower during puberty (12).

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Huber MA: Osteogenesis imperfecta. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103: 314-320.
2. Barron MJ, McDonnell ST, MacKie I, Dixon MJ: Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis 2008; 3: 31.
3. Van Dijk FS, Sillence DO: Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014; 164: 1470-1481.
4. Biria M, Abbas FM, Mozaffar S, Ahmadi R: Dentinogenesis imperfecta associated with osteogenesis imperfecta. Dent Res J 2012; 9: 489-494.
5. O’Connell AC, Marini JC: Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 87: 189-196.
6. Rauch F, Glorieux FH: Osteogenesis imperfecta. The Lancet 2004; 363: 1377-1385.
7. Cabral W, Chang W, Barnes A et al.: Propyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 2007; 39: 359-365.
8. Saeves R, Wekre LL, Ambjornsen E et al.: Oral findings in adults with osteogenesis imperfecta. Spec Care Dentist 2009; 29: 102-108.
9. Majorana A, Bardellini E, Brunelli PC et al.: Dentinogenesis imperfecta in children with osteogenesis imperfecta: a clinical and ultrastructural study. Int J Pediatr Dentist 2010; 20: 112-118.
10. Paterson CR, McAllion S, Miller R: Heterogeneity of osteogenesis imperfecta type I. J Med. Genet 1983; 20: 203-205.
11. Van Dijk FS, Pals G, Van Rijn RR et al.: Classification of osteogenesis imperfecta revisited. Eur J Med Genet 2010; 53: 1-5.
12. Brustein HC, Mautner RL: Osteogenesis imperfecta: review of the medical and dental literature and report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1976; 42: 42-52.
13. Malmgren B, Astrom E, Soderhall S: No osteonecrosis in jaws of young patients with osteogenesis imperfecta treated with bisphosphonates. J Oral Pathol Med 2008; 37: 196-200.
14. Schwartz S, Joseph C, Iera D, Vu DD: Bisphosphonates, osteonecrosis, osteogenesis imperfecta and dental extractions: a case series. J Can Dent Assoc 2008; 74: 537-542.
15. Migliorati CA, Schubert MM, Peterson DE, Seneda LM: Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy. Cancer 2005; 104: 83-93.
16. Lam DK, Sandor GKB, Holmes HI et al.: A review of bisphosphonate-associated osteonecrosis of the jaws and it’s management. J Can Dent Assoc 2007; 73: 171-176.
17. Mavrokokki T, Cheng A, Stein B, Goss A: Nature and frequency of bisphosphonate-associated osteonecrosis of the jaw in Australia. J Oral Maxillofac Surg 2007; 65: 415-423.
18. Kamoun-Goldrat A, Ginisty D, Le Merrer M: Effects of bisphosphonates on tooth eruption in children with osteogenesis imperfecta. Eur J Oral Sci 2008; 116: 195-198.
19. Sapir S, Shapira J: Dentinogenesis imperfecta: an early treatment strategy. Pediatr Dent 2001; 23: 232-237.
20. Kim JW, Simmer JP: Hereditary dentin defects. J Dent Res 2007; 86: 392-399.
21. Malmgren B, Lindskog S: Assessment of dysplastic dentin in osteogenesis imperfecta and dentinogenesis imperfecta. Acta Odontol Scand 2003; 61: 72-80.
22. Lund AM, Jensen BL, Nielsen LA, Skovby F: Dental manifestations of osteogenesis imperfecta and abnormalities of collagen I metabolism. J Craniofac Genet Dev Biol 1998; 18: 30-37.
23. Lukinmaa PL, Ranta H, Ranta K, Kaitila I: Dental findings in osteogenesis imperfecta, part I: occurrence and expression of type I dentinogenesis imperfecta. J Craniofac Genet Dev Biol 1987; 7: 115-125.
24. Lindau BM, Dietz W, Hoyer I et al.: Morphology of dental enamel and dentine-enamel junction in osteogenesis imperfecta. Int J Pediatr Dent 1999; 9: 13-21.
25. Sunderland EP, Smith CJ: The teeth in osteogenesis and dentinogenesis imperfecta. Br Dent J 1980; 149: 287-289.
26. Lindau B, Dietz W, Lundgren T et al.: Discrimination of morphological findings in dentine from osteogenesis imperfecta patients using combinations of polarized light microscopy, microradiography and scanning electron microscopy. Int J Paediatr Dent 1999; 9: 253-261.
27. Jensen BL, Lund AM: Osteogenesis imperfecta: clinical, cephalometric, and biochemical investigations of OI types I, III and IV. J Craniofac Genet Dev Biol 1997; 17: 121-132.
28. Schwartz S, Tsipouras P: Oral findings in osteogenesis imperfecta. Oral Surg Oral Med. Oral Pathol Oral Radiol Endod 1984; 57: 161-167.
29. Malmgren B, Norgren S: Dental aberrations in children and adolescents with osteogenesis imperfecta. Acta Odontol Scand 2002; 60: 65-71.
otrzymano: 2017-10-12
zaakceptowano do druku: 2017-10-30

Adres do korespondencji:
*Joanna Szczepańska
Zakład Stomatologii Wieku Rozwojowego Uniwersytet Medyczny w Łodzi
ul. Pomorska 251, 92-213 Łódź
tel. +48 (42) 675-75-16
joanna.szczepanska@umed.lodz.pl

Nowa Stomatologia 4/2017
Strona internetowa czasopisma Nowa Stomatologia