Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 11/2014, s. 783-786
*Joanna Krzowska-Firych1, Agata Kozłowska1, Taral Sukhadia2, Lamis Karolina Al-Mosawi2
Zakażenia szpitalne wywołane przez lekooporne bakterie
Hospital-acquired infections caused by antibiotic resistant bacteria
1Department of Infectious Diseases, Medical University, Lublin
Head of Department: Krzysztof Tomasiewicz, MD, PhD
2Clinical Research Association for Infectious Diseases (CRAID), Department of Infectious Diseases, Medical University, Lublin
CRAID Coordinator: Joanna Krzowska-Firych, MD, PhD
Streszczenie
Na świecie zakażenia szpitalne stanowią istotną przyczynę zachorowalności i śmiertelności, zwłaszcza jeżeli czynnikiem etiologicznym są lekooporne drobnoustroje. W Europie w ostatnich dekadach odnotowuje się stały wzrost częstości zakażeń szpitalnych wywołanych przez bakterie oporne na antybiotyki, co powoduje wzrost kosztów leczenia, niepowodzeń terapeutycznych i zgonów. Szacuje się, że rocznie w krajach Unii Europejskiej u około 4 100 000 hospitalizowanych pacjentów występują zakażenia szpitalne. Liczba zgonów będących bezpośrednim następstwem tych zakażeń wynosi około 37 000. Ponad 70% bakterii będących przyczyną zakażeń szpitalnych wykazuje oporność na co najmniej jeden antybiotyk. Lekooporność drobnoustrojów stanowi zatem poważny problem w aspekcie zdrowia publicznego. Spośród bakterii Gram-dodatnich głównymi patogenami są oporne na wankomycynę enterokoki (VRE), pneumokoki i metycylinooporne szczepy Staphylococcus aureus (MRSA). Zjawisko wielolekooporności występujące wśród bakterii Gram-ujemnych stanowi poważne i rosnące zagrożenie dla hospitalizowanych pacjentów, zwłaszcza w oddziałach intensywnej terapii.
W tym artykule omówiono zagadnienia dotyczące problematyki lekooporności wśród drobnoustrojów szpitalnych stanowiących istotne zagrożenie dla pacjentów placówek służby zdrowia.
Summary
Hospital acquired infections (HAIs) caused by antibiotic resistant bacteria are a significant cause of morbidity and mortality worldwide. In recent decades the incidence of HAI with antibiotic resistant bacteria has increased remarkably. The percentages of antimicrobial resistance continued to increase in Europe leading to mounting healthcare costs, failed treatment and deaths. Approximately 4 100 000 patients are estimated to acquire a healthcare-associated infection in the European Union (EU) every year. The number of deaths occurring as a direct consequence of these infections is estimated to be at least 37 000. More than 70% of the bacteria that causes HAIs are resistant to at least one antibiotic. Antimicrobial resistance (AMR) is a serious threat to public health. Among Gram--positive bacteria vancomycin-resistant enterococci (VRE), pneumococcal infections, and methicillin-resistant Staphylococcus aureus (MRSA) are the most important. Multidrug--resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent in intensive therapy units (ITUs).
This review details the main aspects of drug-resistant bacteria being a serious threat to patients in healthcare settings.



INTRODUCTION
Hospital acquired infections (HAIs) also known as a nosocomial infections are a significant cause of morbidity and mortality worldwide, especially if the causative organism has developed resistance to a number of antimicrobial agents (1).
Approximately 4 100 000 patients are estimated to acquire a healthcare-associated infection in the European Union (EU) every year. The number of deaths occurring as a direct consequence of these infections is estimated to be at least 37 000. About 5-10% of patients admitted to acute care hospitals and long-term care facilities in the United States develop a hospital--acquired infection, with an annual total of more than one million people (2).
Antimicrobial resistance (AMR) is a serious threat to public health. More than 70% of the bacteria that causes HAIs are resistant to at least one antibiotic. In recent decades the incidence of HAI with antibiotic resistant bacteria has increased remarkably and the fight against HAI has become of critical concern to clinicians worldwide. Antibiotic resistance is a critical challenge for infective disease management. The percentages of AMR, especially multidrug resistance (MDR), continued to increase in Europe leading to mounting healthcare costs, failed treatments, and deaths. Data from the European Antimicrobial Resistance Surveillance Network (EARS-Net) indicate that the proportion of strains of major pathogens isolated from blood or cerebrospinal fluid (CSF) with resistance to important antimicrobial agents exceeds 10% or even 25% in several countries, with the highest figures seen in southern and eastern Europe (3, 4).
Multidrug-resistance (MDR) was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories. Extensively drug-resistance (XDR) was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories and pandrug-resistance (PDR) was defined as non-susceptibility to all agents in all antimicrobial categories (3).
Gram-positive and Gram-negative bacteria are both affected by the emergence and rise of antimicrobial resistance and this problem continues to grow (3).
Gram-positive resistance
Vancomycin-resistant enterococci (VRE) were first described in Europe in 1988 and have rapidly spread worldwide. Enterococci are a part of the normal human faecal flora. The main sites of colonization in the hospitalized patients are soft tissue wounds, ulcers, and the gastrointestinal tract. Enterococci were reported as the second most common cause of nosocomial infection in the US. Infections with these pathogens have been associated with poor outcomes (5).
There are six recognized phenotypes of vancomycin resistance: VanA, VanB, VanC, VanD, VanE, and VanG. Human enterococcal infections are mainly caused by 2 species: Enterococcus faecalis and Enterococcus faecium, which express the VanA or VanB phenotype. The most common nosocomial infections produced by these pathogens are urinary tract infections (associated with instrumentation and antimicrobial resistance) followed by intra-abdominal and pelvic infections. They also cause surgical wound infections, bacteriemia, endocarditis, neonatal sepsis, and rarely meningitis (6, 7).
The data from multicentre study from Poland revealed that among urinary tract pathogens Gram-positive cocci were isolated more frequently from a hospital setting (14.1%) and the most common were Enterococcus spp. (8.5%). Three strains of E. faecalis from hospital expressed high-level aminoglycoside resistance (HLAR) (8). The incidence of human VRE infections in European countries is low (1-3%) compared with the high and rising rate in the US (9). An important feature in the emergence of the enterococci as a cause of nosocomial infections is their increasing resistance to a wide range of antibiotics both instrinsic and acquired resistance. Recommendations for controlling vancomycin resistance include reducing the use of drugs known to increase the risk of enterococcal infection (e.g. third-generation cephalosporins), limiting vancomycin use, applying accurate microbiological identification methods, and maintaining hand-washing procedure (8-10).
Pneumococcal resistance

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

24

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

59

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Sydnor ERM, Perl TM: Hospital epidemiology and infection control in acute care settings. Clin Microbiol Rev 2011; 24(1): 141-173.
2. Council of the European Union. Council recommendation of 9 June 2009 on patient safety, including the prevention and control of healthcare-associated infections (2009/C151/01). Official Journal of the European Union. 3 Jul 2009. Available from: http://ec.europa.eu/health/patient_safety/docs/council_2009_en.pdf.
3. Magiorakos AP, Srinivasan A, Carey RB et al.: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-281.
4. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2010. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2011. Available from: http://ecdc.europa.eu/en/publications/Publications/1111_SUR_AMR_data.pdf.pdf.
5. Uttley AH, Collins CH, Naidoo J, George RC: Vancomycin-resistant enterococci. Lancet 1988; 1: 57-58.
6. Courvalin P: Vancomycin resistance in Gram-positive cocci. Clin Infect Dis 2006; 42 (suppl. 1): 25-34.
7. Burger T, Fry D, Fusco R et al.: Multihospital surveillance of nosocomial methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and Clostridium difficile: analysis of a 4-year data sharing project, 1999-2002. Am J Infect Control 2006; 34: 458-464.
8. Hryniewicz K, Szczypa K, Sulikowska A et al.: Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. J Antimicrob Chemother 2001; 47(6): 773-780.
9. Centers for Disease Control and Prevention (COC). Nosocomial enterococci resistant to vancomycin in United States, 1989-1993. MMWR Morb Mortal Wkly Rep 1993; 42: 597-599.
10. Tschudin-Sutter S, Frei R, Dangel M et al.: Not all patients with vancomycin-resistant enterococci need to be isolated. Clin Infect Dis 2010; 51(6): 678-683.
11. Moreillon P, Wenger A, Caldelari I: Pneumococcal antibiotic resistance. Rev Med Suisse Romande 2000; 120(8): 651-659.
12. Jacobs MR: Drug-resistant Streptococcus pneumoniae: rational antibiotic choices. Am J Med 1999; 3106(5A): 19-25.
13. Köck R, Becker K, Cookson B et al.: Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill 2010; 15(41): pii = 19688.
14. Deurenberg RH, Vink G, Kalenic S et al.: The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2007; 13(3): 222-235.
15. European Antimicrobial Resistance Surveillance System (EARSS). EARSS Annual Report 2008. Bilthoven: EARSS; 2009 (Accessed 14 Jun 2010). Available from: http://www.rivm.nl/earss/Images/EARSS%202008_final_tcm61-65020.pdf.
16. Jones RN: Resistance patterns among nosocomial pathogens. CHEST 2001; 119: 397-404.
17. Romaszczyn D: Pałeczki Gram(-) w zakażeniach szpitalnych. Zakażenia 2005; 5: 28-30.
18. Centers for Disease Control and Prevention. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 2009; 58: 256-260.
19. Sanchez GV, Master RN, Clark RB et al.: Klebsiella pneumoniae antimicrobial drug resistance, United States 1998-2010. Emerging Infectious Diseases 2013; 19(1): 133-136.
20. Peleg AY, Seifert H, Paterson DL: Acinetobacter baumannii: Emergence of a successful pathogen. Clin Microbiol Rev 2008; 21(3): 538-582.
21. Eliopoulos GM, Maragakis LL, Perl TM: Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 2008; 46(8): 1254-1263.
22. Rossolini GM, Mantengoli E: Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005; 11 (suppl. 4): 17-32.
23. National Nosocomial Infections Surveillance (NNIS) Report, data summary from October 1986 to April 1996, issued May 1996. Am J Infect Control 1996; 24: 380-388.
24. Masuda N, Sakagawa E, Ohya S et al.: Contribution of the MexX-MexY-oprM Efflu system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemoyher 2000; 44: 2242-2246.
25. Jones RN, Kirby JT, Beach ML et al.: Geographic variations in activity of broad spectrum b-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY antimicrobial surveillance program (1997-2000). Diagn Microbiol Infect Dis 2002; 43: 239-243.
otrzymano: 2014-09-10
zaakceptowano do druku: 2014-10-14

Adres do korespondencji:
*Joanna Krzowska-Firych
Department of Infectious Diseases Medical University
ul. Staszica 16, 20-081 Lublin
tel: +48 (81) 534-94-14
firychjdr@poczta.onet.pl

Postępy Nauk Medycznych 11/2014
Strona internetowa czasopisma Postępy Nauk Medycznych