Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 10/2016, s. 781-786
*Michał Stuss1, 2, Ewa Sewerynek1, 2
Vitamin K2 and osteoporosis – facts and myths
Witamina K2 i osteoporoza – fakty i mity
1Chair of Endocrinology, Department of Endocrine Disorders and Bone Metabolism, Medical University of Łódź
Head of Department: Professor Ewa Sewerynek, MD, PhD
2Outpatient Clinic of Osteoporosis, Military Medical Academy University Teaching Hospital – Central Veterans’ Hospital in Łódz
Head of Clinic: Professor Ewa Sewerynek, MD, PhD
W ciągu ostatnich lat algorytmy diagnostyczno-lecznicze dotyczące osteoporozy uległy istotnym zmianom, pojawiło się na rynku również wiele leków, do których część pacjentów i lekarzy podchodzi z dużą ostrożnością. W związku z łatwym dostępem do wiedzy medycznej pacjenci częściej świadomie dokonują wyboru leków i bardziej wnikliwie czytają ulotki dołączone do zakupionych w aptece preparatów. Istnieje także pewna grupa chorych, świadomie rezygnująca z zaproponowanego, skutecznego w obliczu twardych dowodów naukowych leczenia na rzecz naturalnych metod postępowania, w tym również suplementów diety. Na rynku dostępne są liczne preparaty, stanowiące połączenia witamin, mikroelementów oraz substancji pochodzenia naturalnego, których skład najczęściej został specjalnie dobrany, aby wspomagać leczenie konkretnej jednostki chorobowej. Zgodnie z prawem farmaceutycznym wypuszczenie na rynek w/w produktów nie wymaga osobnych badań, a ich właściwości lecznicze, o których zapewnia producent, nie są wystarczająco poparte dowodami naukowymi, jednakże nie stanowi to reguły. Niniejszy tekst stanowi próbę odpowiedzi na pytanie, czy suplementacja witaminy K, w tym K2, istotnie wpływa na układ kostny i chroni przed osteoporozą.
The diagnostic-therapeutic algorithms, regarding osteoporosis, have over recent years demonstrated significant changes, as well as a number of medicinal products have been launched onto the market. It should be noted that a part of patients and their doctors take a cautious approach to these new developments. Taking the advantage of the fairly easy access to medical knowledge, patients are more and more aware of drug selection, while also reading with growing attention the leaflets, attached to medical products, sold at pharmacies and chemist’s shops. There is also a certain group of patients, consciously giving up the proposed lines of therapy, the efficacy of which is confirmed by relevant scientific evidence. These patients replace doctor’s therapy by natural methods, including diet supplementation. The market offers numerous agents which combine vitamins, microelements and various substances of the natural origin the composition of which is most often selected to support therapy of specific medical condition. Following the Pharmaceutical Law, the launching of the above-mentioned products onto the market does not require any separate studies and the medical properties of these products, assured in advertisements by their manufacturers, are not sufficiently supported by scientific evidence, however, it is not a rule in itself. This text has been set out to answer the question whether supplementation with vitamin K, including K2, significantly influences the bone tissue, providing protection against osteoporosis.

The term “Vitamin K” is referred to a group of compounds soluble in fats, called naphthoquinones. In its natural form, there are two types of vitamin K: K1 (phylloquinone) and K2 (menaquinone-n or MK-n). The particular forms of MK consist of 2-methyl-1,4-naphthoquinone, connected with a phytyl group (phylloquinone) and with a prenyl group of varying length (1).
Vitamin K1 is of plant origin and is a dominating form of vitamin K in daily diet. Green vegetables and some fruits, e.g., kiwi fruit, green grapes and avocado. Vitamin K2, i.e., n-menaquinone, is, in fact, a group of compounds, marked with numbers, corresponding to the length of the lateral chain (difarnesyl group and other isoprene groups). Compounds from the vitamin K2 group can, in the majority of cases, be synthesised by bacteria. Menatetrenone (MK-4) is an exception here. The type of menaquinone depends on the bacteria, participating in its synthesis. Vitamin K2-containing foodstuffs include: liver, eggs, butter, milk, cheeses and some vegetables. Natto is among the richest sources of vitamin K2 (mainly menaquinone-7). It is a product from fermented soybeans, which contains 1100 μg of vit. K/100g (2). Other compounds from the vitamin K2 group, such as, for example, MK-10 and MK-13, are produced by intestinal bacteria but their biological activity and digestibility are much lower. The supplements, available on the market, contain mainly phylloquinone, MK-4 or MK-7.
The reference dietary intake (RDI) is 65 μg/day for men and 55 μg/day for women (also pregnant and breast-feeding) (3). The above-mentioned RDI values are maintained within the range from 5 up to 65 μg/day, depending on gender and age and they apply only to phylloquinone (vitamin K1). American recommendations propose a slightly higher supplementation of phylloquinone (4), i.e., 120 μg/day for men and 90 μg/day for women. Now, there are no data in the literature, concerning the maximal, safe doses of vitamin K and of RDI for vitamin K2. In the majority of interventional studies, the applied daily supplementation considerably exceeded RDI (10 mg/day with vitamin K1 and 45 mg/day with vitamin K2-MK-4) and no serious adverse effects were noted. Therefore, it seems that the doses, used in the majority of available supplements, are safe (5-7).
The deficit of vitamin K is, as a rule, defined as bleeding, induced by the lack of activation of blood coagulation proteins, what is often assessed by undercarboxylated prothrombin concentration which increases proportionally to vitamin K deficit. The symptomatic deficit of vitamin K is rare and mostly associated with severe liver and pancreas disease, digestion and/or absorption disorders, alcoholism, cystic fibrosis or with chronic malnutrition (8). One should also remember about the drugs which may affect vitamin K absorption and metabolism, including phenytoin, cephalosporins, cholestyramine and high doses of vitamin E (9).
The subclinical deficit of vitamin K is more often observed in clinical practice than its clinically overt form and is most often biochemically defined as a low result of serum vitamin K concentration assay (the standard acc. to various sources: 0.5-2.5 nM; 0.2-3.2 ng/mL) or a high level of undercarboxylated osteocalcin) (≥ 4.0 ng/mL) (10-12).
Vitamin K effects on the osseous system
Vitamin K plays the role of a co-factor for the gamma-glutamyl carboxylase (GGK) enzyme, localised at the endoplasmic reticulum. The proteins, which undergo vitamin K-dependent carboxylation, are called Gla proteins, demonstrate abilities to bind calcium ions and are present in the extracellular fluid, as well as in systemic fluids (13).
Vitamin K deficits result in reducing fraction of carboxylated Gla proteins, what translates into lower activity of the processes for which they are responsible; it may increase the risk of osteoporosis or enhance its course. It has been proven that vitamin K affects carboxylation of the following proteins present in the osseous tissue and in the cartilage: osteocalcin, matrix Gla protein (MGP) Gla-rich protein (GRP), S protein and gas 6 (11, 14). Osteocalcin is produced by osteoblasts in the course of bone mineralisation, being a local inhibitor for the process, thus protecting the tissue against excessive calcification. It has high affinity to hydroxyapatite calcium and its presence is thus most often confirmed in the extracellular matrix of the osseous tissue, while its much lower concentrations are found in blood serum (15). Osteocalcin concentration assays are used to evaluate the bone formation process intensity (as bone formation marker) but a hormonal role is also assigned to the above-mentioned protein (16-19). Therefore, vitamin K plays a significant role in the process of bone formation, especially in bone tissue mineralisation. Moreover, vitamin K2 may also act via other, GGK-unrelated mechanisms (10). There is also some evidence that vitamin K2-menaquinone (MK-7) may inhibit bone resorption, as well as osteoclastogenesis, while stimulating the bone formation process in result of induced osteoblastogenesis. It has also been demonstrated that menaquinone may play the role of a regulator in the transcription processes of genes responsible for bone metabolism (mainly bone formation), via the receptors for steroids and xenobiotics (20). It appears from other studies that OC may play some role also in the interactions between osteoclasts and osteoblasts and thus control the process of bone resorption (21, 22).
The presence of MGP is found in many systemic tissues and, similarly as in case of OC, its higher activity is observed in bones. MGP is responsible for calcium mobilisation in the osseous system. It also prevents precipitation of calcium ions in blood vessels, as well as exerts prophylactic effects against calcification of soft tissues (23). The role of the other mentioned Gla proteins has not yet been enough understood.
Does vitamin K protect against osteoporosis?
As it has already been mentioned, there is a strong evidence for the beneficial role of vitamin K in bone metabolism control, what may also be associated with the prophylactics of osteoporosis. At present, the synergistic effects of many vitamins and minerals are analysed, many of which may improve the motor system, including, among others, magnesium, calcium, vitamin K and vitamin D (24-26). It has been demonstrated that a combined supplementation of vitamin K and vitamin D brings better therapeutic effects than a separate use of each of them, while their combination may stimulate the bone formation process.
Vitamin K and bone mineral density
In clinical studies, evaluating bone mineral density (BMD), the beneficial therapeutic effects of the supplementation with vitamin K has often been demonstrated. However, data from observational studies are not entirely in line with one another, regarding the issue of the above-mentioned correlations (27-30). In two studies on the Japanese population, there was a significant relationship between the high intake of Natto, rich in vitamin K1 and MK-7, and high BMD values (31, 32). In another study on an analogous population, the authors demonstrated a positive correlation between low concentrations of vitamin K1 and K2 in serum and low BMD (33).

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Vermeer C: Vitamin K: the effect on health beyond coagulation – an overview. Food & Nutrition Research 2012; 56: 5329. DOI: 10.3402/fnr.v56i0.5329.
2. Guralp O, Erel CT: Effects of vitamin K in postmenopausal women: mini review. Maturitas 2014; 77(3): 294-299.
3. Jarosz M: Normy żywienia dla populacji polskiej – nowelizacja. Instytut Żywności i Żywienia, Warszawa 2012.
4. Trumbo P, Yates AA, Schlicker S, Poos M: Dietary Reference Intakes. Journal of the American Dietetic Association 2001; 101(3): 294-301.
5. Fang Y, Hu C, Tao X et al.: Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trials. Journal of Bone and Mineral Metabolism 2012; 30(1): 60-68.
6. Braam LA, Knapen MH, Geusens P et al.: Factors affecting bone loss in female endurance athletes: a two-year follow-up study. The American Journal of Sports Medicine 2003; 31(6): 889-895.
7. Stevenson M, Lloyd-Jones M, Papaioannou D: Vitamin K to prevent fractures in older women: systematic review and economic evaluation. Health Technology Assessment 2009; 13(45): 1-134.
8. Natural Standard Database Professional Monograph, Vitamin K. Natural standard: the authority on integrative medicine; https://naturalmedicines.therapeuticresearch.com (accessed July 01, 2014).
9. Traber MG: Vitamin E and K interactions – a 50-year-old problem. Nutrition Reviews 2008; 66(11): 624-629.
10. Kaneki M, Hosoi T, Ouchi Y, Orimo H: Pleiotropic actions of vitamin K: protector of bone health and beyond? Nutrition 2006; 22(7-8): 845-852.
11. Misra D, Booth SL, Tolstykh I et al.: Vitamin K deficiency is associated with incident knee osteoarthritis. The American Journal of Medicine 2013; 126(3): 243-248.
12. Sadowski JA, Hood SJ, Dallal GE, Garry PJ: Phylloquinone in plasma from elderly and young adults: factors influencing its concentration. The American Journal of Clinical Nutrition 1989; 50(1): 100-108.
13. Booth SL: Roles for vitamin K beyond coagulation. Annual Review of Nutrition 2009; 29: 89-110.
14. Shearer MJ, Fu X, Booth SL: Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Advances in Nutrition 2012; 3(2): 182-195.
15. Gundberg CM, Lian JB, Booth SL: Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Advances in Nutrition 2012; 3(2): 149-157.
16. Ferron M, Hinoi E, Karsenty G, Ducy P: Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences of the United States of America 2008; 105(13): 5266-5270.
17. Karsenty G, Ferron M: The contribution of bone to whole-organism physiology. Nature 2012; 481(7381): 314-320.
18. Lee NK, Sowa H, Hinoi E et al.: Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130(3): 456-469.
19. Price PA: Vitamin K-dependent formation of bone Gla protein (osteocalcin) and its function. Vitamins and Hormones 1985; 42: 65-108.
20. Tabb MM, Sun A, Zhou C et al.: Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. The Journal of Biological Chemistry 2003; 278(45): 43919-43927.
21. Boskey AL, Gadaleta S, Gundberg C et al.: Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 1998; 23(3): 187-196.
22. Ducy P, Desbois C, Boyce B et al.: Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382(6590): 448-452.
23. Shea MK, Holden RM: Vitamin K status and vascular calcification: evidence from observational and clinical studies. Advances in Nutrition 2012; 3(2): 158-165.
24. Kidd PM: Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Alternative medicine Review a Journal of Clinical Therapeutic 2010; 15(3): 199-222.
25. La Braam, Knapen MH, Geusens P et al.: Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcified Tissue International 2003; 73(1): 21-26.
26. Yamaguchi M, Uchiyama S, Tsukamoto Y: Stimulatory effect of menaquinone-7 on bone formation in elderly female rat femoral tissues in vitro: prevention of bone deterioration with aging. International Journal of Molecular Medicine 2002; 10(6): 729-733.
27. Booth SL, Broe KE, Gagnon DR et al.: Vitamin K intake and bone mineral density in women and men. The American Journal of Clinical Nutrition 2003; 77(2): 512-516.
28. Booth SL, Tucker KL, Chen H et al.: Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. The American Journal of Clinical Nutrition 2000; 71(5): 1201-1208.
29. Macdonald HM, McGuigan FE, Lanham-New SA et al.: Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. The American Journal of Clinical Nutrition 2008; 87(5): 1513-1520.
30. Rejnmark L, Vestergaard P, Charles P et al.: No effect of vitamin K1 intake on bone mineral density and fracture risk in perimenopausal women. Osteoporosis International 2006; 17(8): 1122-1132.
31. Fujita Y, Iki M, Tamaki J et al.: Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporosis International 2012; 23(2): 705-714.
32. Ikeda Y, Iki M, Morita A et al.: Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) Study. The Journal of Nutrition 2006; 136(5): 1323-1328.
33. Kanai T, Takagi T, Masuhiro K et al.: Serum vitamin K level and bone mineral density in post-menopausal women. International Journal of Gynaecology and Obstetrics 1997; 56(1): 25-30.
34. Knapen MHJ, Drummen NE, Smit E et al.: Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporosis International 2013; 24(9): 2499-2507.
35. Kanellakis S, Moschonis G, Tenta R et al.: Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K1) or menaquinone-7 (vitamin K2): the Postmenopausal Health Study II. Calcified Tissue International 2012; 90(4): 251-262.
36. Emaus N, Gjesdal CG, Almas B et al.: Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporosis International 2010; 21(10): 1731-1740.
37. Koitaya N, Sekiguchi M, Tousen Y et al.: Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. Journal of Bone and Mineral Metabolism 2014; 32(2): 142-150.
38. Forli L, Bollerslev J, Simonsen S et al.: Dietary vitamin K2 supplement improves bone status after lung and heart transplantation. Transplantation 2010; 89(4): 458-464.
39. Sato Y, Kanoko T, Satoh K, Iwamoto J: Menatetrenone and vitamin D2 with calcium supplements prevent nonvertebral fracture in elderly women with Alzheimer’s disease. Bone 2005; 36(1): 61-68.
40. Iketani T, Kiriike N, Murray BS et al.: Effect of menatetrenone (vitamin K2) treatment on bone loss in patients with anorexia nervosa. Psychiatry Research 2003; 117(3): 259-269.
41. Sato Y, Honda Y, Kaji M et al.: Amelioration of osteoporosis by menatetrenone in elderly female Parkinson’s disease patients with vitamin D deficiency. Bone 2002; 31(1): 114-118.
42. Shiomi S, Nishiguchi S, Kubo S et al.: Vitamin K2 (menatetrenone) for bone loss in patients with cirrhosis of the liver. The American Journal of Gastroenterology 2002; 97(4): 978-981.
43. Yonemura K, Kimura M, Miyaji T, Hishida A: Short-term effect of vitamin K administration on prednisolone-induced loss of bone mineral density in patients with chronic glomerulonephritis. Calcified Tissue International 2000; 66(2): 123-128.
44. Sato Y, Honda Y, Kuno H, Oizumi K: Menatetrenone ameliorates osteopenia in disuse-affected limbs of vitamin D- and K-deficient stroke patients. Bone 1998; 23(3): 291-296.
45. Huang Z, Wan S, Lu Y et al.: Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporosis International 2015; 26(3): 1175-1186.
46. Hart JP, Catterall A, Dodds RA et al.: Circulating vitamin K1 levels in fractured neck of femur. Lancet 1984; 2(8397): 283.
47. Hodges SJ, Akesson K, Vergnaud P et al.: Circulating levels of vitamins K1 and K2 decreased in elderly women with hip fracture. Journal of Bone and Mineral Research 1993; 8(10): 1241-1245.
48. Hodges SJ, Pilkington MJ, Stamp TC et al.: Depressed levels of circulating menaquinones in patients with osteoporotic fractures of the spine and femoral neck. Bone 1991; 12(6): 387-389.
49. Cockayne S, Adamson J, Lanham-New S et al.: Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Archives of Internal Medicine 2006; 166(12): 1256-1261.
50. Cheung AM, Tile L, Lee Y et al.: Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Medicine 2008; 5(10): e196.
51. Inoue T, Fujita T, Kishimoto H et al.: Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. Journal of Bone and Mineral Metabolism 2009; 27(1): 66-75.
52. Apalset EM, Gjesdal CG, Eide GE, Tell GS: Intake of vitamin K1 and K2 and risk of hip fractures: The Hordaland Health Study. Bone 2011; 49(5): 990-995.
53. Iwamoto J, Matsumoto H, Takeda T: Efficacy of menatetrenone (vitamin K2) against non-vertebral and hip fractures in patients with neurological diseases: meta-analysis of three randomized, controlled trials. Clinical Drug Investigation 2009; 29(7): 471-479.
54. Binkley N, Harke J, Krueger D et al.: Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. Journal of Bone and Mineral Research 2009; 24(6): 983-991.
55. Binkley NC, Krueger DC, Engelke JA et al.: Vitamin K supplementation reduces serum concentrations of under-gamma-carboxylated osteocalcin in healthy young and elderly adults. The American Journal of Clinical Nutrition 2000; 72(6): 1523-1528.
56. Hirao M, Hashimoto J, Ando W et al.: Response of serum carboxylated and undercarboxylated osteocalcin to alendronate monotherapy and combined therapy with vitamin K2 in postmenopausal women. Journal of Bone and Mineral Metabolism 2008; 26(3): 260-264.
57. Sato Y, Honda Y, Umeno K et al.: The prevention of hip fracture with menatetrenone and risedronate plus calcium supplementation in elderly patients with Alzheimer disease: a randomized controlled trial. The Kurume Medical Journal 2011; 57(4): 117-124.
58. Suzuki K, Tsuji S, Fukushima Y et al.: Clinical results of alendronate monotherapy and combined therapy with menatetrenone (vitamin K2 [VitK2]) in postmenopausal RA patients. Modern Rheumatology 2013; 23(3): 450-455.
59. Tanaka S, Miyazaki T, Uemura Y et al.: Design of a randomized clinical trial of concurrent treatment with vitamin K2 and risedronate compared to risedronate alone in osteoporotic patients: Japanese Osteoporosis Intervention Trial-03 (JOINT-03). Journal of Bone and Mineral Metabolism 2014; 32(3): 298-304.
60. Gajic-Veljanoski O, Bayoumi AM, Tomlinson G et al.: Vitamin K supplementation for the primary prevention of osteoporotic fractures: is it cost-effective and is future research warranted? Osteoporosis International 2012; 23(11): 2681-2692.
61. Thijssen HH, Drittij-Reijnders MJ: Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. The British Journal of Nutrition 1996; 75(1): 121-127.
62. Vermeer C, Theuwissen E: Vitamin K, osteoporosis and degenerative diseases of ageing. Menopause International 2011; 17(1): 19-23.
63. Hodges SJ, Pilkington MJ, Shearer MJ et al.: Age-related changes in the circulating levels of congeners of vitamin K2, menaquinone-7 and menaquinone-8. Clinical science (London, England 1979) 1990; 78(1): 63-66.
64. Saltzman, JR, Russell RML: The aging gut. Nutritional issues. Gastroenterology Clinics of North America 1998; 27(2): 309-324.
65. Truong JT, Fu X, Saltzman E et al.: Age group and sex do not influence responses of vitamin K biomarkers to changes in dietary vitamin K. The Journal of Nutrition 2012; 142(5): 936-941.
66. Iwamoto I, Kosha S, Noguchi S et al.: A longitudinal study of the effect of vitamin K2 on bone mineral density in postmenopausal women a comparative study with vitamin D3 and estrogen-progestin therapy. Maturitas 1999; 31(2): 161-164.
otrzymano: 2016-09-01
zaakceptowano do druku: 2016-09-22

Adres do korespondencji:
*Michał Stuss
Chair of Endocrinology Department of Endocrine Disorders and Bone Metabolism Medical University of Łódź
ul. Żeligowskiego 7/9, 90-752 Łódź
tel./fax +48 (42) 639-31-27

Postępy Nauk Medycznych 10/2016
Strona internetowa czasopisma Postępy Nauk Medycznych