Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Zastanawiasz się, jak wydać pracę doktorską, habilitacyjną lub monografię? Chcesz dokonać zmian w stylistyce i interpunkcji tekstu naukowego? Nic prostszego! Zaufaj Wydawnictwu Borgis – wydawcy renomowanych książek i czasopism medycznych. Zapewniamy przede wszystkim profesjonalne wsparcie w przygotowaniu pracy, opracowanie dokumentacji oraz druk pracy doktorskiej, magisterskiej, habilitacyjnej. Dzięki nam nie będziesz musiał zajmować się projektowaniem okładki oraz typografią książki.

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - New Medicine 4/2016, s. 126-129 | DOI: 10.5604/14270994.1228144
*Csaba Szekrenyesi1, Kata Rez1, Zoltán Z. Nagy1, 2
Surface temperature change of PMMA plates in refractive surgery performed with two types of modern excimer lasers
1Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
Head of Faculty: Professor Zoltán Zsolt Nagy, MD, PhD
2Department of Ophthalmology, Semmelweis University, Budapest, Hungary
Head of Department: Professor Zoltán Zsolt Nagy, MD, PhD
Summary
Introduction. The conditions in the operating room can have an influence on the postoperative results of the refractive surgery performed with excimer lasers.
Aim. The aim of this study was to examine the relationship of the temperature of PMMA plates (polymethylmethacrylate), environmental conditions and the energy load caused by the laser impulses during refractive surgery procedure.
Material and methods. Wavelight Allegretto and Schwind Amaris excimer lasers were used for the study. Polymethylmethacrylate (PMMA) plates with parameters: -10 Dpt myopic ablation and 6.5 mm optical zone were used as a target for photoablation during the calibration of excimer lasers. Energy load and temperature rise were measured with high accuracy infrared thermometer.
Results. Logarithmically rising temperature was measured for both lasers. Maximal temperature measuredwas 48°C for the Allegretto laser and 43°C for the Amaris laser.
Conclusions. Higher energy load with smaller repetition rate causes higher thermal load. Thermal load of the PMMA plate during the ablation is dependent on the environmental conditions, such as temperature, humidity, air flow, smoke plume evacuation, etc.
Introduction
The accuracy of the excimer lasers used in refractive surgery is critical, considering the short- and long-term refractive results and wound healing. There is great demand to make the procedure faster and causing less discomfort for the patient, and, consequently, for the technical development of instruments used. On the other hand, the long-term results and the possible side-effect make it essential to precisely control the physical parameters (energy profile, repetition rate, airflow) of excimer laser during the whole refractive procedure (1, 2). The corneal temperature remains one of the most important parameters to control (3-6).
Before the refractive procedure, a speculum is applied onto the eye of the patient in to keep the eye open as well as to ensure constant temperature of the cornea. The removal of the superficial part of the corneal epithelium or isolation of the flap may change temperature in the eyeball (7).
During the procedure, laser impulses cause the ablation of corneal surface. According our preliminary study, part of the energy is transformed into heat and its amount is dependent on the frequency of the laser, its diameter and energy profile, as well as ablation strategy of the modern flying-spot devices (8). The cornea undergoes dynamic thermal changes during the procedure and exchanges heat with the surrounding tissues, as well as with the environment (9). Aqueous humor circulation causes thermal convection deeper into the eye, and the air flow enabled by laser smoke plume evacuators causes convection to the environment10. The cornea also radiates the heat (10).
In vivo studies examine the maximal temperature of the cornea during the treatment in clinical circumstances, the factors influencing corneal temperature, as well as the effect of corneal temperature on long-term results and wound healing, and the function of the heat-shock proteins (11-13).
In vitro studies frequently use PMMA (polymethylmethacrylate) plates and measure their surface temperature. The plates are also widely used for preoperative testing of the lasers – they serve for the calibration, the comparison of different lasers and their ablation profile, and the investigation of the relationship between the energy and temperature load (14-17).
This study examines the time factor of the temperature rise during excimer laser treatment equal to -10 D myopic refractive treatment on PMMA test plates on two different excimer lasers. Laser smoke plume evacuators were installed and the room conditions were equal to those used in the operating room.
Aim
The aim of this study was to examine the relationship of the temperature of PMMA plates, environmental conditions and the energy load caused by the laser impulses during refractive surgery procedure.
Material and Methods
Two models of excimer lasers were used for this study – Schwind Amaris 500E, operating on 500 Hz frequency, and Allegretto Wavelight, operating on 400 Hz frequency. Both of them were used on factory settings.
Environmental conditions of the room were stable. The temperature was set to 22 ± 1°C and humidity was 35 ± 5%.
Laboratory-calibrated, high accuracy infrared thermometer (EBRO TLC 730, WTW GmbH, Germany) was used to the measure the corneal surface temperature. Accuracy and resolution of the thermometer was 0.1°C. All measurements were obtained from 8 cm distance. The distance (D) and the measured spot size (S) were proportional, with D/S = 8/1. The spot size applied by 8 cm distance was 1 cm, therefore, equal to the size of the photoablation area. The thermometer was stored in the operating room in order to adjust it to the temperature of the environment.
The surface of the PMMA test plate was fitted to the working plane of the laser device. Spheric myopic -10 D surface profile and 6.5 mm optical zone plates were used. Continuous temperature measurement was taken. The results of the measurement were recorded with a video camera.
The output energies of both lasers were measured with calibrated Ophir thermoelectric UV energy meter, equipped with L30Ex measure head.
Results
The energy measured during the procedure with the Wavelight Allegretto laser are shown in figure 1, and with the Schwind Amaris – in figure 2. The repetition rate of the Schwind Amaris laser is 125% higher (500 vs 400 Hz), but the output power of the Wavelight Allegretto is about 180% higher (620 vs 350 mW). Therefore, the procedure time is 140% longer with the Amaris laser (40 vs 29 s).
Fig. 1. The energy during the -10 Dpt treatment of the Wavelight Allegretto
Fig. 2. The energy during the -10 Dpt treatment of the Schwind Amaris

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp tylko do jednego, POWYŻSZEGO artykułu w Czytelni Medycznej
(uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony)

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem , należy wprowadzić kod:

Kod (cena 19 zł za 7 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

 

 

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 49 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

otrzymano: 2016-09-02
zaakceptowano do druku: 2016-11-30

Adres do korespondencji:
*Csaba Szekrenyesi
Faculty of Health Sciences Semmelweis University
17 Vas Str., 1088 Budapest, Hungary
tel.: +36-1-2486-5965
e-mail: szekrenyesics@se-etk.hu

New Medicine 4/2016
Strona internetowa czasopisma New Medicine