Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - New Medicine 4/2018, s. 135-146 | DOI: 10.25121/NewMed.2018.22.4.135
Michał Michalik1, *Adrianna Podbielska-Kubera1, Maria Pawłowska2, Jolanta Miazga2
Bacterial flora in chronic sinusitis in children
Flora bakteryjna w przewlekłym zapaleniu zatok u dzieci
1Department of Otolaryngology, MML Medical Centre, Warsaw, Poland
Head of Department: Michał Michalik, MD, PhD
2„Diagnostyka”, Central Laboratory, Warsaw, Poland
Head of Department: Maria Pawłowska, Director of the Region
Streszczenie
Przewlekłe zapalenie błony śluzowej nosa i zatok to jedna z głównych przyczyn zachorowalności w populacji pediatrycznej. Etiologia przewlekłego zapalenia zatok (PZZ) pozostaje nadal w sferze badań. Większość przypadków PZZ rozwija się na bazie niewyleczonego ostrego zapalenia zatok. W ostrym zapaleniu zatok mamy najczęściej do czynienia z jednym gatunkiem bakterii, zwykle tlenowych. W PZZ dominuje flora bakteryjna mieszana, z obecnością 2-3 szczepów bakteryjnych. Najczęstszymi patogenami są: S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus, koagulazo-ujemne gronkowce, a także bakterie Gram-ujemne: Pseudomonas aeruginosa, Proteus spp., Klebsiella spp., Enterobacter spp., Escherichia coli i bakterie beztlenowe.
W badanej grupie pacjentów przeważały gronkowce: wyizolowano 36 szczepów S. aureus i 31 szczepów S. epidermidis. Typowe patogeny dróg oddechowych były praktycznie nieobecne, stanowiły tylko niewielki procent wszystkich izolowanych drobnoustrojów.
Pełna diagnostyka i leczenie chorych z PZZ powinny obejmować konsultacje laryngologiczne, mikrobiologiczne, alergologiczne, biochemiczne, histopatologiczne, a także diagnostykę obrazową. Bardzo ważna jest izolacja materiałów o wysokiej wartości diagnostycznej (aspiraty, tkanki). Dobór właściwej antybiotykoterapii, poza określeniem antybiotykooporności bakterii, może wymagać oznaczenia cech wirulencji wyhodowanych szczepów.
Summary
Chronic rhinosinusitis is one of the main causes of morbidity in the paediatric population. The aetiology of chronic sinusitis (CS) is still investigated. Most cases of chronic sinusitis develop from unresolved acute sinusitis. Acute sinusitis is usually associated with one species of bacteria (most often aerobic), whereas chronic sinusitis is dominated by a mixed bacterial flora including 2-3 bacterial strains. The most common pathogens in chronic sinusitis are S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus, coagulase-negative staphylococci, as well as Gram-negative bacteria, such as Pseudomonas aeruginosa, Proteus spp., Klebsiella spp., Enterobacter spp., Escherichia coli and anaerobic bacteria.
Staphylococci predominated in the study group of patients: 36 strains of S. aureus and 31 strains of S. epidermidis were isolated. Typical respiratory pathogens were practically absent, and constituted only a small percentage of all isolated microorganisms.
Full diagnosis and treatment of patients with chronic sinusitis should include laryngological, microbiological, allergological, biochemical, and histopathological consultations as well as diagnostic imaging. Isolation of materials with high diagnostic value (aspirates, tissues) is very important. The selection of appropriate antibiotic therapy, in addition to assessing bacterial resistance to antibiotics, may require the determination of virulence traits of cultured strains.



Characteristics of chronic sinusitis
Upper respiratory tract infections (URTIs) are considered to be one of the most common reasons for children’s visits to outpatient clinics in the United States. They generate billions in medical expenses, mainly as a result of school absence and lost days of work in the case of parents attending to their ill children. Literature data indicate 6-8 upper respiratory viral infections in children annually. These infections may be complicated by acute otitis media (AOM) and paranasal sinusitis (1, 2).
Depending on disease duration, symptoms and aetiological factors, acute and chronic sinusitis may be distinguished. Acute sinusitis is characterised by symptoms persisting for up to 4 weeks. In the case of chronic sinusitis (CS), the symptoms persist for more than 12 weeks. Patients with symptoms persisting for 4-12 weeks are diagnosed with subacute sinusitis (2). Sinusitis may be also classified as related to nasal polyps (eosinophilic inflammation) and unrelated to polyps (neutrophilic inflammation) (3).
Chronic rhinosinusitis is the main cause of morbidity in the paediatric population (4). It is difficult to determine the incidence of the disease in children, however, it is estimated that 5-10% of children with UTIs will develop acute rhinosinusitis, which often becomes chronic (6). The maxillary and ethmoidal sinuses, which are already present at birth, are most often affected in small children. Other sinuses are affected at a later stage. The sphenoidal sinuses form at the age of 3 years, while the frontal sinuses develop at the age of about 7 years. Full pneumatisation of maxillary and ethmoidal sinuses is observed in 12-year--old children (2).
CS is diagnosed based on subjective symptoms, their duration, and objective evidence for inflammation (5). The main symptoms of CS include nasal mucosal congestion, abundant discharge, nasal obstruction, reduced sense of smell, and malaise (6). Chronic sinusitis most often evolves in stages, with various pathological processes, different bacteriology and various forms of treatment at each stage. Over time, the disease process becomes more complex, difficult to treat and more likely to relapse (7).
The aetiopathology of CS
The sinuses are lined with a mucous membrane producing large amounts of mucus. The mucosa contains ciliary epithelium covered with cilia. Pendular movement of cilia facilitates the release of secretions from the sinuses. Recurrent infections contribute to oedema of the nasal and sinus mucosa. Mucosal oedema leads to mucociliary dysfunction. The connection between sinuses and nasal cavity becomes narrowed or completely closed (8).
Deviated nasal septum and hypertrophied nasal turbinates promote infection and make the treatment difficult. Patients with these anatomical defects are at particular risk of an impaired outflow of sinus secretions. The secretion may contain contaminants from the nasal vestibule or nasopharyngeal bacterial flora (1).
CS has a multifactorial aetiology and may be associated with mucociliary dysfunction, immune disorders, allergy, environmental or social factors, gastro-oesophageal disorders, reflux disease, and chronic bacterial infection (4). Furthermore, chronic sinusitis may be caused by nasal polyps, nasal septum deviation, facial injury, respiratory infections, cystic fibrosis, HIV, and exposure to environmental pollutants (6, 9).
Age is a risk factor for chronic sinusitis. The risk of infection is 74% for 2-6-year-old children and 38% for children aged > 10 years (3).
Overlapping symptoms of various URTIs make the diagnosis complicated. Chronic rhinosinusitis, IRTIs, tonsillar hyperplasia, tonsillitis and even exacerbated allergic rhinitis should be considered in the diagnosis. The pathophysiological role of tonsils in chronic rhinosinusitis is associated with their anatomical location, close to the nasal cavity. Tonsils are a reservoir of bacteria, creating optimal conditions for both onset and persistence of chronic paranasal sinusitis in children (3).
Multidisciplinary teams are formed to determine the epidemiology, pathophysiology and diagnostic/therapeutic methods for CS in adults. Chronic sinusitis in children differs from that in adults; therefore, studies to develop treatment guidelines for CS in the paediatric population are needed (6). It is postulated by most physicians that microorganisms play a crucial role in the aetiology of most CS cases (1).
Microbiology of CS
Chronic paranasal sinusitis may be caused by bacteria, viruses and fungi (2). It was thought for a long time that healthy individuals have sterile sinuses. However, research showed that bacterial colonies are present not only in patients with CS, but also in healthy controls (10). The relationship between bacterial microflora and sinusitis is still investigated.
While it is agreed in literature that bacteria are an aetiological factor in acute sinusitis, no consensus was reached on the role of bacteria in chronic sinusitis (1). Microbiology of paranasal sinusitis is related to different stages of the disease. The early phase (acute rhinosinusitis) is usually caused by viral infection (rhinovirus, adenovirus, influenza or parainfluenza virus). Viral infections usually last up to 10 days. Some of the patients develop secondary bacterial infection (1). One bacterial species (usually aerobic) dominates in acute sinusitis in most patients (10). Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the most common bacterial pathogens (1, 11).
For CS, mixed bacterial flora comprising 2-3 strains is dominant (10). Microbiological findings indicate the presence of gram-positive aerobic bacteria, such as S. pneumoniae, H. influenza, M. catarrhalis, Staphylococcus aureus, β-haemolytic streptococci and anaerobic bacteria (of the genus Bacteroides, Prevotella, Peptostreptococcus and Fusobacterium) in CS (3).
Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA), can colonise nasal mucosa and is more prevalent in CS patients compared to healthy population. MRSA isolation rates have increased over the past decade, accounting for more than 2/3 of S. aureus isolates (1). S. aureus strains are considered the main causative organism in chronic sinusitis. Children with isolated MRSA are more likely to develop recurrent sinusitis compared to children with methicillin-sensitive S. aureus strains. However, no statistical differences were found (11). The nasal cavity is also colonised by Staphylococcus epidermidis; however its pathogenicity in CS is still under investigation (1).
The presence of small amounts of these microbes is physiological in nature. However, if bacterial titres exceed 1,000 CFU/mL per 1 mL of mucus, they become pathogenic (6). The presence of normal flora may protect against pathogens, while changes in commensal bacterial flora seem to be associated with the pathogenesis of CS (12).
Aerobic gram-negative strains, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp., Proteus mirabilis and Escherichia coli, are isolated from patients with CS, mainly from patients with underlying diseases, such as cystic fibrosis (Pseudomonas spp.) or diabetes mellitus, and immunocompromised patients (neutropenia, HIV). They also dominate in patients repeatedly treated with antibiotics or patients after sinus surgeries (1). The role of fungi in paediatric chronic sinusitis is unclear (2). Some literature data confirm that fungi may induce allergic fungal paranasal sinusitis, colonisation of sinuses or invasive fungal sinusitis (1).
As the disease progresses, a change in the bacterial flora is observed: from the one typical of acute sinusitis to the dominance of β-haemolytic streptococci, coagulase-negative staphylococci and anaerobic bacteria (7). The presence of S. pneumoniae, H. influenzae, and/or M. catarrhalis strains in the nasopharynx of children with URTIs may increase the risk of progression of acute otitis media into chronic sinusitis. Competition between physiological bacterial flora and respiratory pathogens is an important infection factor (13). Brook (1) confirmed microbiologic concordance between the ear and sinus in 69% of paediatric patients. The most frequently recovered isolates included H. influenzae, S. pneumoniae, Prevotella spp. and Peptostreptococcus spp. S. pneumoniae strains were isolated from approximately 30% of children with acute sinusitis. H. influenzae and M. catarrhalis were recovered from 20% of children (2).
Chronic sinusitis involves formation of biofilm, which plays a crucial role in the pathogenesis and persistence of infection (1). Biofilms are bacterial aggregates characterised by increased antibiotic resistance. Studies to develop an optimal approach to biofilm elimination are underway (2). Studies using an electron microscope confirmed biofilm formation in 88-99% of paediatric patients. Biofilm formation was observed in only 6% of children after tonsillectomy (3).
Diagnosis and treatment of CS

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Brook I: The role of antibiotics in pediatric chronic rhinosinusitis. Laryngoscope Investig Otolaryngol 2017; 2(3): 104-108.
2. Tan R, Spector S: Pediatric sinusitis. Curr Allergy Asthma Rep 2007; 7(6): 421-426.
3. Stenner M, Rudack C: Diseases of the nose and paranasal sinuses in child. GMS Curr Top Otorhinolaryngol Head Neck Surg 2014; 93 (suppl. 1): S24-48.
4. Criddle MW, Stinson A, Savliwala M, Coticchia J: Pediatric chronic rhinosinusitis: a retrospective review. Am J Otolaryngol 2008; 29(6): 372-378.
5. Halawi AM, Smith SS, Chandra RK: Chronic rhinosinusitis: epidemiology and cost. Allergy Asthma Proc 2013; 34(4): 328-334.
6. Stevens WW, Lee RJ, Schleimer RP, Cohen NA: Chronic rhinosinusitis pathogenesis. J Allergy Clin Immunol 2015; 136(6): 1442-1453.
7. Hamilos DL: Problem-based learning discussion: Medical treatment of pediatric chronic rhinosinusitis. Am J Rhinol Allergy 2016; 30(2): 113-212.
8. Michalik M, Podbielska-Kubera A: Wpływ schorzeń zatok na procedury implantologiczne. Forum Stomatologii Praktycznej 2018; 1-2: 26-30.
9. Manes RP, Batra PS: Etiology, diagnosis and management of chronic rhinosinusitis. Expert Rev Anti Infect Ther 2013; 11(1): 25-35.
10. Anderson M, Stokken J, Sanford T et al.: A systematic review of the sinonasal microbiome in chronic rhinosinusitis. Am J Rhinol Allergy 2016; 30(3): 161-166.
11. Whitby CR, Kaplan SL, Mason EO et al.: Staphylococcus aureus sinus infections in children. Int J Pediatr Otorhinolaryngol 2011; 75(1): 118-121.
12. Jain R, Waldvogel-Thurlow S, Darveau R, Douglas R: Differences in the paranasal sinuses between germ-free and pathogen-free mice. Int Forum Allergy Rhinol 2016; 6: 631-637.
13. Santee CA, Nagalingam NA, Faruqi AA et al.: Nasopharyngeal microbiota composition of children is related to the frequency of upper respiratory infection and acute sinusitis. Microbiome 2016; 4: 34.
14. Hauser LJ, Feazel LM, Ir D et al.: Sinus culture poorly predicts resident microbiota. Int Forum Allergy Rhinol 2015; 5(1): 3-9.
15. Michalik M, Samet A, Marszałek A et al.: Intra-operative biopsy in chronic sinusitis detects pathogenic Escherichia coli that carry fimG/H, fyuA and agn43 genes coding biofilm formation. Plos One (w druku).
16. Das A, Biswas H, Mukherjee A et al.: Evaluation of preoperative flupirtine in ambulatory functional endoscopic sinus surgery: A prospective, double-blind, randomized controlled trial. Anesth Essays Res 2017; 11(4): 902-908.
17. Hughes N, Bewick J. Van Der Most R, O’Connell M: A previously unreported serious adverse event during balloon sinuplasty – case report. BMJ Case Rep 2013; 2013.
otrzymano: 2018-11-14
zaakceptowano do druku: 2018-12-05

Adres do korespondencji:
*Adrianna Podbielska-Kubera
Centrum Medyczne MML
ul. Bagno 2, 00-112 Warszawa, Polska
tel.: +48 508-613-946
e-mail: adrianna.podbielska@mml.com.pl

New Medicine 4/2018
Strona internetowa czasopisma New Medicine