Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - New Medicine 1/2020, s. 3-10 | DOI: 10.25121/NewMed.2020.24.1.3
Karolina Raczkowska-Łabuda, *Lidia Zawadzka-Głos
SARS-CoV-2: the key issues
SARS-CoV-2: kluczowe informacje
Department of Pediatric Otolaryngology, Medical University of Warsaw, Poland
Head of Department: Associate Professor Lidia Zawadzka-Głos, MD, PhD
Pod koniec 2019 roku w przemysłowym mieście Wuhan, będącym stolicą chińskiej prowincji Hubei, rozpoczęła się epidemia nowej choroby wirusowej (nCoV-19). Skala zagrożenia wywołana przez koronawirusa była początkowo bagatelizowana ze względu na szczątkowe i wybiórcze informacje przekazywane z Chin. Od tego czasu nCoV-19 rozprzestrzenił się w 183 krajach na całym świecie, wywołując objawy infekcji i zgony w nieporównywalnej do tej pory skali. 11 marca dyrektor generalny Światowej Organizacji Zdrowia (WHO) Tedros Adhanom Ghebreyesus oficjalnie ogłosił wybuch pandemii COVID-19. Artykuł przedstawia podstawowe informacje dotyczące wirusa SARS-CoV-2 i choroby, którą powoduje: COVID-19. Podsumowuje metody diagnostyczne, zalecane postępowanie czy sposoby ograniczania zasięgu epidemii. Zawarte w pracy dane prezentują stan wiedzy z końca kwietnia 2020 roku.
Przegląd dostępnej literatury światowej skłania do wniosku, że mechanizmy przenoszenia SARS-CoV-2 nie zostały w pełni poznane, a rozprzestrzenianie się wirusa pomiędzy ludźmi odbywa się głównie drogą kropelkową. Spektrum objawów zakażeń waha się od łagodnych do krytycznych, ze znaczną przewagą występowania przypadków łagodnych/bezobjawowych. Obecnie rekomendowaną metodą diagnostyczną jest molekularny test wykrywający obecność RNA wirusa SARS-CoV-2. Inne, dostępne testy (tzw. szybkie) obejmują metody bezpośrednie – wykrycie antygenu SARS-CoV-2, lub pośrednie – wykrycie swoistych przeciwciał. Oddziały SOR mogą przybliżyć rozpoznanie za pomocą TK płuc lub LUS. Wykazano, że personel obecny przy zabiegach o podwyższonym ryzyku emisji aerozoli powinien być bezwzględnie wyposażony w profesjonalne środki ochrony indywidualnej (ŚOI). Zalecenia dotyczące procedur chirurgicznych laryngologii dziecięcej zawarte zostały w opracowaniu Międzynarodowej Grupy Otolaryngologii Pediatrycznej (IPOG) opublikowanym 14 kwietnia 2020 roku.
At the end of 2019, in the industrial city of Wuhan, which is the capital of the Chinese province of Hubei, a new coronavirus disease (nCoV-19) began to erupt. At the beginning, the scale of the threat posed by the virus was underestimated, and the information coming from China was residual and does not provide a complete picture of the situation. Since then, nCoV-19 has spread to 183 different countries around the world, causing many cases and thousands of deaths. On March 11, World Health Organization (WHO) Director-General Tedros Adhanom Ghebreyesus officially declared the COVID-19 outbreak a pandemic. This review work aims to provide some basic information about the virus (SARS-CoV-2) and the disease it causes (COVID-19). In addition, it covers diagnostic methods, recommended management and methods to reduce the extent of infection. This is a kind of summary of the state of knowledge at the end of April 2020.
To summarize main observations based on the review of world literature on the subject is driving us into conclusion that the transmission mechanisms of SARS-CoV-2 are not fully recognized. The spread of the virus from human to human occurs mainly through respiratory drops; symptomatic infections spectrum ranges from mild to critical, with a significant prevalence of mild/asymptomatic cases. Molecular test for the SARS-CoV-2 virus RNA is currently recommend. Other test include rapid direct SARS-CoV-2 antigen or indirect antibody detection, lung CT and LUS. Recommendation for ENT surgical procedures are collected in The International Paediatric Otolaryngology Group (IPOG) statement published on the 14th of April 2020.Personnel involved in aerosol generating procedures should be fitted with PPE.

An outbreak of a novel coronavirus disease-19 (nCoV-19) infection began at the end of 2019 in Wuhan, a city in the Hubei Province of China (1). Since then, nCoV-19 spread in 183 different countries in the world, causing 2’899’833 cases and confirmed 203’055 deaths (as of April 25th, 2020 https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). The virus is now known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) previously, it was referred to as 2019-nCoV. The disease it causes is called coronavirus disease 2019 (COVID-19).
On March 11, World Health Organization (WHO) Director-General Tedros Adhanom Ghebreyesus officially declared the COVID-19 outbreak a pandemic (2). Worldwide public health groups have issued recommendations for preventing, diagnosing and treating the illness. This article will discuss the epidemiology, clinical features, diagnosis, management, and prevention of COVID-19.
Because information on the transmissibility of COVID-19 is not fully documented and confirmed, understanding of the transmission risk is incomplete. It is known that nowadays person-to-person spread of SARS-CoV-2 is thought to occur mainly via respiratory droplets, resembling the spread of influenza. Virus can infect another person when infected human coughs, sneezes, or talks via droplets having direct contact with the mucous membranes. Another fact is that human coronaviruses can remain infectious on surfaces for a number of days (3). In advance, transmission of COVID-19 from aerosol and other surfaces is possible (3, 4). It is also known that one key mechanism of transmission can be through self-inoculation from contaminated surfaces (e.g., through failure to observe proper hand hygiene and frequent face touching that is an unconscious common behavior). The confirmation that hands are the reason of auto-contamination may be found inter alia at the Yen Lee Angele Kwok’s work. Together with colleagues looked at behavioral characteristics involving medical students at the University of New South Wales in a longitudinal observational study, which was published in the February 1, 2015 issue of the American Journal of Infection Control (5). Researchers assessed face-touching behavior as a potential for virus transmission and self-inoculation. The study showed that, on average, of 26 students, each touched their face 23×/h. Of all face touches, 44% (1024/2346) involved contact with a mucous membrane whereas 56% (1322/2346) of contacts involved nonmucosal areas. Of mucous membrane touches observed, 36% (372/1024) involved the mouth, 31% (318/1024) involved the nose, 27% (273/1024) involved the eyes, and 6% (61/1024) were a combination of these regions.
Taking under consideration presence of SARS-CoV-2 in specimens obtained from sites other than the nasopharyngeal swab (which is the routine method used to confirm clinical diagnosis of COVID-19) the conclusion is that 93% positive samples for live virus were at bronchoalveolar lavage fluid, 72% in sputum, 63% in nasal swabs, 46% in fibrobronchoscope brush biopsy, 32% in pharyngeal swabs, 29% in feces, 1% in blood, and 0 in urine. These results suggest that SARS-CoV-2 may be transmitted via the fecal route. Data were obtained from January 1 through February 17, 2020 at 3 hospitals in the Hubei and Shandong provinces and Beijing, China, with 1070 specimens collected from 205 infected patients (6).
Taking those data together, Kampf et al. concluded that studies looking at decontamination are the key one. They reviewed 22 studies examining the use of biocidal agents as chemical disinfection to inactivate the virus. Again, the researchers confirmed that both SARS and MERS can remain on metal, glass, and plastic for up to 9 days and showed that surface disinfection with solutions such as 62 to 71% ethanol, 0.5% hydrogen peroxide, or 0.1% sodium hypochlorite within one minute can eradicate the presence of the virus. Other biocidal agents such as 0.05 to 0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate were shown to be less effective (7).
Clinical features
The incubation period of COVID-19 infection continues approximately 5.2 days (8). The period from the onset of COVID-19 symptoms to death is dependent on the age of the patient and status of the patient’s immune system and ranged from 6 to 41 days with a median of 14 days (9). It is statistically shorter among patients > 70-years old compared with those under the age of 70 (9). Major initial symptoms of COVID-19 include fever, cough, anosmia/hyposmia, muscular soreness and dyspnea. Some patients showed atypical symptoms, such as diarrhea, vomiting, sputum production, headache, haemoptysis, diarrhoea, and lymphopenia (10-12). However, the clinical phenotype is confounded by the fact that 25.2% patients had at least one other underlying medical condition (13-16).
Data collected in China revealed that during the first and second phase of the epidemic patients were older, more likely to be male, and likely to have exposure to the seafood market. Clinically, they had more bilateral patchy shadows, or ground glass opacity in the lungs (11, 13, 14). Nowadays it is obvious that virus infection is not selective in age. It was reported even in a 1-month-old infant (17-19). The current statistical summaries show that out of 44 672 confirmed cases, 77.8% are between 30 and 69 years old and 51.4% are male (17). The spectrum of symptomatic infection ranges from mild to critical; most infections are not severe (11, 13, 14, 16). Based on the report of the Chinese Center for Disease Control and Prevention that included over 44,500 confirmed infections with an estimation of disease severity (20): Mild (no or mild pneumonia) was reported in 81%; Severe disease (e.g., with dyspnea, hypoxia, or > 50% lung involvement on imaging within 24 to 48 hours) was reported in 14%; Critical disease (e.g., with respiratory failure, shock, or multiorgan dysfunction) was reported in 5%. Disclosed overall case fatality rate was 2.3%; no deaths were reported among noncritical cases.
For the time being, there is no evidence for intrauterine infection by vertical transmission in women who developed COVID-19 during late pregnancy and no evidence that pregnant women are more susceptible compared with other adult patients (21).
Although currently the number of new infections is decreasing, the COVID-19 epidemic is still ongoing. Knowledge of SARS-CoV-2 is systematically improved.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Zhu N, Zhang D, Wang W et al.; China Novel Coronavirus Investigating and Research Team: A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733.
2. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. World Health Organization (WHO) website; https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Published March 11, 2020 (data dostępu: 23.03.2020).
3. van Doremalen N, Bushmaker T, Morris DH et al.: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382:1564-1567.
4. Ong SWX, Tan YK, Chia PY et al.: Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020; 323(16): 1610-1612.
5. Kwok YL, Gralton J, McLaws ML: Face touching: a frequent habit that has implications for hand hygiene. Am J Infect Control 2015; 43: 112-114.
6. Wang W, Xu Y, Gao R et al.: Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323(18): 1843-1844.
7. Kampf G, Todt D, Pfaender S et al.: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020; 104: 246-251.
8. Li Q, Guan X, Wu P et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-1207.
9. Wang W, Tang J, Wei F: Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020; 92(4): 441-447.
10. Ren LL, Wang YM, Wu ZQ et al.: Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Med J 2020; 133(9): 1015-1024.
11. Huang C, Wang Y, Li X et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
12. Carlos WG, Dela Cruz CS, Cao B et al.: Novel Wuhan (2019-nCoV) coronavirus. Am J Respir Crit Care Med 2020; 201(4): 7-8.
13. Wang D, Hu B, Hu Ch et al.: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-1069.
14. Chen N, Zhou M, Dong X et al.: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513.
15. Holshue ML, DeBolt C, Lindquist S et al.: First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-936.
16. Chan JF, Yuan S, Kok K-H et al.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514.
17. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41(2): 145-151.
18. Guan W-J, Ni Z-Y, Hu Y et al.: Clinical characteristics of 2019 novel coronavirus infection in China. N Engl J Med 2020; 382: 1708-1720.
19. Wei M, Yuan J, Liu Y et al.: Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA 2020; 323(13): 1313-1314.
20. Wu Z, McGoogan JM: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020 Feb 24. doi: 10.1001/jama.2020.2648. Online ahead of print.
21. Chen H, Guo J, Wang Ch et al.: Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395(10226): 809-815.
22. European Commission: EU Recommendations for testing strategies. 2020; https://ec.europa.eu/info/sites/info/files/covid19_eu_recommendations_on_testing_strategies_v2.pdf.
23. Cascella M, Rajnik M, Cuomo A et al.: Features, Evaluation and Treatment Coronavirus (COVID-19) (Updated 2020 Mar 20). StatPearls (Internet). Treasure Island (FL): StatPearls Publishing; 2020 Jan; https://www.ncbi.nlm.nih.gov/books/NBK554776/.
24. Official Journal of the European Union 2009/108/EC: Commission Decision of 3 February 2009 amending Decision 2002/364/EC on common technical specifications for in vitro –diagnostic medical devices (notified under document number C(2009) 565); https://eur-lex.europa.eu/eli/dec/2009/108(1)/oj.
25. European Centre for Disease Prevention and Control: An overview of the rapid test situation for COVID-19 diagnosis in the EU/EEA. 1 April 2020. Stockholm: ECDC; 2020.
26. Yan L, Liming X: Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. Am J Roentgenology 2020; 214: 1280-1286.
27. Ai T, Yang Z, Hou H et al.: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 2020: 200642.
28. Fang Y, Zhang H, Xie J et al.: Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 2020: 200432.
29. Kanne JP: Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology 2020 Feb 4. DOI: https://doi.org/10.1148/radiol.2020200241.
30. Hope MD, Raptis CA: Chest Computed Tomography for Detection of Coronavirus Disease 2019 (COVID-19): Don’t Rush the Science. Ann Intern Med 2020; M20-1382.
31. Yoon SH, Lee KH, Kim J et al.: Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID?19): analysis of nine patients treated in Korea. Korean J Radiol 2020; 21: 494-500.
32. Soldati G, Smargiassi A, Inchingolo R et al.: Is There a Role for Lung Ultrasound During the COVID?19 Pandemic? J of Ultrasound in Medicine 2020. DOI: https://doi.org/10.1002/jum.15284.
33. Poggiali E, Dacrema A, Bastoni D et al.: Letter to the Editor: Can Lung US Help Critical Care Clinicians in the Early Diagnosis of Novel Coronavirus (COVID-19) Pneumonia? Radiology; Published Online 2020 March 13. DOI: https://doi.org/10.1148/radiol.2020200847.
34. Buonsenso D, Pata D, Chiaretti A: COVID-19 outbreak: less stethoscope, more ultrasound. Lancet 20 March 2020. DOI: https://doi.org/10.1016/S2213-2600(20)30120-X.
35. GOV.UK: COVID-19: investigation and initial clinical management of possible cases – 24 March 2020; https://www.gov.uk/government/publications/wuhan-novel-coronavirus-initial-investigation-of-possiblecases/investigation-and-initial-clinical-management-of-possible-cases-of-wuhan-novel-coronavirus-wn-covinfection#criteria.
36. Tran K, Cimon K, Severn M et al.: Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One 2012; 7: e35797.
37. Van Doremalen N, Bushmaker T, Morris DH et al.: Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. N Engl J Med 2020 Mar 17: NEJMc2004973. Published online 2020 Mar 17. DOI: 10.1056/NEJMc2004973. https://www.medrxiv.org/content/10.1101/2020.03.09.20033217v1.full.pdf.
38. ENT UK: Guidance for ENT during the COVID-19 pandemic. 20 March 2020 (data dostępu: 22.03.2020).
39. Consensus statement: Safe Airway Society principles of airway management and tracheal intubation specific to the COVID-19 adult patient group. Medical Journal of Australia March 2020.
40. Royal College of Anaesthetists UK: COVID-19 airway management principles. Accessed 2020 March 24; https://icmanaesthesiacovid-19.org/covid-19-airway-management-principles.
41. ENT UK: Tracheostomy guidance during the COVID-19 Pandemic. March 24 2020; https://www.entuk.org/tracheostomy-guidance-during-covid-19-pandemic.
42. ASOHNS: ASOHNS guidelines addressing the COVID-19 pandemic. 22nd March; http://www.asohns.org.au/.
43. WHO 19/3/2020: Rational use of personal protective equipment (PPE) for coronavirus disease (COVID-19).
44. Lu X, Zhang L, Du H et al.: SARS CoV-2 Infection in Children. N Engl J Med 2020; 382: 1663-1665.
45. Chow EJ, Schwartz NG, Tobolowsky FA et al.: Symptom Screening at Illness Onset of Health Care Personnel With SARS-CoV-2 Infection in King County, Washington. JAMA 2020; 323(20): 2087-2089.
46. Centers for Disease Control and Prevention: Interim Infection Prevention and Control Recommendations for Patients with Confirmed 2019 Novel Coronavirus (2019-nCoV) or Patients Under Investigation for 2019-nCoV in Healthcare Settings; https://www.cdc.gov/coronavirus/2019-nCoV/hcp/infection-control.html (data dostępu: 15.04.2020).
47. Klompas M, Morris CA, Sinclair J et al.: Universal masking in Hospitals in the Covid-19 Era. N Engl J Med 2020; 382(21): e63.
48. Leung NHL, Chu DKW, Shiu EYC et al.: Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med 2020; 26(5): 676-680.
49. McMichael TM, Clark S, Pogosjans S et al.: COVID-19 in a Long-Term Care Facility – King County, Washington, February 27-March 9, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(12): 339-342.
50. Wei WE, Li Z, Chiew CJ et al.: Presymptomatic Transmission of SARS-CoV-2 – Singapore, January 23-March 16, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(14): 411-415.
51. Wallner G et al.: Wytyczne postępowania w oddziałach zabiegowych szpitali niejednoimiennych podczas pandemii COVID-19. 24th April 2020 MP Chirurgia; https://www.mp.pl/chirurgia/wytyczne-przegladowe/234357,wytyczne-dotyczace-postepowania-na-oddzialach-zabiegowych-szpitali-niejednoimiennych-podczas-pandemii-covid-19-21042020.
otrzymano: 2020-03-04
zaakceptowano do druku: 2020-03-25

Adres do korespondencji:
*Lidia Zawadzka-Głos
Klinika Otolaryngologii Dziecięcej Warszawski Uniwersytet Medyczny
ul. Żwirki i Wigury 63A, 02-091 Warszawa, Polska
tel.: +48 (22) 317-97-21

New Medicine 1/2020
Strona internetowa czasopisma New Medicine