Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Fitoterapii 3/2011, s. 159-163
*Anna Kędzia1, Alina Mścisz2, Henry O. Meissner3
Działanie oleju z Tamanu (Calophyllum inophyllum) na bakterie beztlenowe wyodrębnione z dróg oddechowych
The effect of Tamanu oil (Calophyllum inophyllum) on anaerobic bacteria isolated from respiratory tract
1Department of Oral Microbiology, Medical University of Gdańsk, Poland
Head of Department: dr hab. Anna Kędzia
2Herba Studio, Mścisz and Co., Poland
3Faculty of Health Studies, Charles Sturt University & TTD International Pty Ltd, Australia
The effect of cold-pressed oil from Tamanu (Calophyllum inophyllum) on total 30 strains (18 strains Gram-negative and 12 Gram-positive) of anaerobic bacteria isolated from respiratory tract of 12 patients. The degree of bacteriostatic property of tested Tamanu oil obtained from Vanuatu (Oceania) on bacteria was determined by means of plate dilution technique in Brucella agar with 5% sheep blood. Incubation was performed during 48 hours in anaerostats at temperature of 37°C in the presence of 10% CO2, 10% N2 and 80% N2, palladic catalyst and anaerobic indicator. The MIC was interpreted as the lowest concentrations of the essential oil inhibiting the growth of bacteria. The highest sensitivity to oil showed Gram-positive anaerobic bacteria, strains Propionibacterium and Actinomyces (MIC between 0.6 and 5 mg/ml) micromonas and Peptostreptococcus (MIC 1.2-5 mg/ml). The lowest sensitivity to Tamanu oil showed Gram-negative strains of anaerobic bacteria: Dialister pneumosintes (MIC 2.5 mg/ml). The remaining strains: Bacteroides, Prevotella, Porphyromonas, Fusobacterium and Veilonella required Tamanu oil concentrations between 5->20 mg/ml to inhibit growth of these bacteria. It appears that Gram-positive anaerobic bacteria are generally more susceptible to Tamanu oil than Gram-negative anaerobic strains. Observed susceptibility of Gram-positive anaerobic bacteria to Tamanu oil may extend its current topical use to application in antimicrobial preparations for oral hygiene such as toothpastes, gargles, mouthwash etc.
There is a growing concern that anaerobic bacteria which show growing resistance to number of commonly-used antibiotics, may present difficulties for medical practitioners in treating patients with chronic pulmonary ailments or cases requiring long-term preventive or curative medication. During last few years a search for new effective pharmaceutical preparations intensified to treat chronic bacterial infections and pulmonary conditions including conventional medicines. This also includes preparations based on traditionally-used medicinal herbs and extracts from various plants and more are less refined plant derivatives, which tend do not caused side effects observed so often when various effective pharmaceuticals are used, particularly during extended period of time. Also, more and more attention is being given to application of herbal preparations with medicinal, preventive properties in products designed for oral hygiene such as toothpastes, mouth rinses, fresheners and gurgles.
Various volatile oils, which have been shown as having strong antibacterial properties (1-7) and been used traditionally in alleviation of pulmonary symptoms and infections of respiratory tract as well as in maintaining oral hygiene. During last decade, one of such oils – Australian Tea Tree Oil (Melaleuca alternifolia Cheel – Myrtaceae family) gained world-wide acceptance as a component of commercial therapeutic preparations, after its strong antimicroorganisms properties linked to main active constituents identified as terpinen-4-ol, γ-terpinene, α-terpinene, α-terpineol, 1,8-cyneol, p-cymene, α-pinene and limonene have been scientifically and clinically proven in a large number of independently-conducted study internationally as well as in one of the previous work from this series (2). As a result, a great many commercial products in variety forms of delivery have been developed and are available on the market as Over the Counter (OTC) therapeutic and preventive preparations.
In a search for new sources of pure and environmentally non-polluted therapeutic oils which may have potential in application to treat chronic pulmonary ailments and/or as curative medications, an attention has been given to a therapeutic oil expressed from kernels separated from fruits of native Polynesian tree Tamanu (Calophyllum inophyllum). An oil derived from Tamanu seeds has been traditionally used for centuries in the South Pacific region as a local medicine to treat skin diseases and a variety of purposes ranging from treatment of scars, cuts, burns, rashes, stings to psoriasis, eczema, sores to neuralgia and sciatica and recently has found application in cosmetics to regenerate damaged skin and preventing skin aging as well as in therapeutics helping to heal and regenerate scarred tissues (8).
Tamanu tree, which grows primarily in the coral sands and on the sea shore, is 3 to 15 meters high and has a thick trunk covered with rugged and cracked bark. It has elliptical, shiny and tough leaves and flowers twice a year. Its flowers, arranged in auxiliary cymes, have a sweet, lime-like fragrance. The numerous fruits, arranged in dusters, are spherical, orange shaped. Once ripe, their smooth, yellow epidermis discloses a thin layer of pulp, with a flavour and taste reminiscent of an apple. The grey, ligneous and rather soft nut contains a pale yellow kernel, which is odourless when fresh. When chewed, it coats the mouth, emulsifies saliva and its insipid taste becomes bitter (8). Tamanu kernels have very high oil content (75%). Oil is mechanically extracted from seeds by cold-pressure system after the mature fruit is harvested and stored to dry. It yields refined, greenish yellow oil, similar to olive oil, with an aromatic odour and an insipid taste. Once grown, a Tamanu tree produces up to 100 kg fruits and about 18 kg oil (8).
The tree is known under botanical names: Calophyllum inophyllum Linn. (syn. Calophyllum bintagor Roxb.) (Guttiferae). It is a member of the mangosteen family. Mesua ferrea Linn. has also been seen as an alternative Latin name (8). English common names describe the tree as Alexandrian Laurel, Tamanu, Pannay Tree, Sweet Scented Calophyllum.
Tamanu oil activity was studied in numerous clinical cases showing that it can be applied on skins as well as in the case of mucous membrane lesions (8). It heals small wounds such as cracks and chaps, but is also efficient on more serious cutaneous problems and post-surgical wounds (9). Those healing, anti-inflammatory and antibiotic properties make Tamanu oil an excellent raw material for cosmetics, in regenerating and protective formulations (10). The oil has been reported as useful for dermal problems and was an ancient treatment for leprosy (11).
Apart of growing literature on use of the Tamau oil as an active stimulant of collagen synthesis to prevent skin aging, there is no publication available so far on bacteriostatic properties of Tamanu oil. However, it has been reported by Dweck and Meadowsy (8) that two essential components of the Calophyllum oil have been isolated by the French scientist Lederer, one of them being a lactone showing antibiotic properties, which, together with the other – a new fatty acid, Calophyllic acid are responsible for Tamanu oil’s cicatrizing power. In order to assess to what degree reported antibiotic properties of the Tamanu oil may be of value in application to bacteriostatic preparations and specifically assess its potential for application in oral hygiene products, an attempt has been made to empirically evaluate a degree to which anaerobic bacteria isolated from respiratory tract of patients with pulmonary infections are sensitive to various concentrations of Tamanu oil of South Pacific origin.
Materials and methods
Product’s origin and process used: the Tamanu oil, used in this study was supplied from Vanuatu, Oceania (South Pacific region). The fruit was harvested from trees grown in villages located in Santo island and processed in local manufacturing facility under quality controlled environment before being exported by air in a tight sealed glass containers for laboratory work reported in this paper. The received sample of oil (donated for study by an Australian company NatureCorp Pty Ltd, Sydney), represented 100% pure commercial batch of 550 l of oil obtained from kernels of naturally-matured Tamanu fruit. After being dried in a controlled low temperature oven (maximum 65°C), kernels were cracked and then pressed using cold extraction process in specially-modified high pressure copra screw press. Extracted batch of oil after coarse filtration through the cloth filter was then stored in sealed plastic containers, away from strong direct light in a cool dry area for transport (without freezing). The sample’s characteristics and specification is presented in Table 1.
Table 1. Specification of Tamanu Oil (Calophyllum inophyllum).
Description: Appearance
dark semi-viscous oil
nutty odour and taste
Fatty Acid Profile:
Palmitic acid C16: 0
Stearic acid C18: 0
Oleic acid C18: 1
Linoleic acid C18: 2
Arachidic acid C20: 0

more than 13%
more than 13%
more than 36%
more than 20%
more than 0,7%

non-saponified fraction:
in oil:
Yeasts and mold in 1 g
Mesophyllic bacteria in 1 g
E. coli bacteria group in 1 g
Salmonella in 10 g
Staphylococcus aureus in 1 g


1. According to the supplier, NatureCorp Pty Ltd (Australia), the oil properly stored in sealed plastic or glass containers, away from strong direct light in a dry, cool area (without freezing) maintains its therapeutic properties for the period of minimum three years.
2. Crystallization and sedimentation may occur during longer storage of Tamanu oil, with the degree of solidifying depending on how low storage temperate is. This has no detrimental effect on the product.
Experimental microbiological procedure
The antibacterial effect of Tamanu oil was investigated on total 30 strains (18 strains Gram-negative and 12 Gram-positive) of anaerobic bacteria isolated from respiratory tract of 12 patients with respiratory tract infections. The materials were inoculated on the surface of enriched and selective media (12). The degree of bacteriostatic property was determined by means of plate dilution technique in Brucella agar with 5% sheep blood. Incubation was performed during 48 hours in anaerostats at temperature of 37°C in the presence of 10% CO2, 10% H2 and 80% N2, palladic catalyst and an indicator of anaerobiosis (12). The MIC was interpreted as the lowest concentrations of the Tamanu oil inhibiting the growth of bacteria. Isolated strains of anaerobic bacteria were identified according to schemes of Virginia Anaerobe Laboratory Manual (12) and Bergey’s Manual (13), taking into account the latest changes in taxonomy (14, 15).
The classification of microorganisms was based according to morphological, physiological and biochemical features according to API 20A Merieux.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Celikel N, Kavas G. Antimicrobial properties of some Essentials oils against some pathogenic microorganisms. Czech J Food Sci, 2008; 26(3): 174-181. 2. Kedzia A, Ostrowski-Meissner H. The effect of selected Essentials oils on aerobic bacteria isolated from respiratory tract. Herba Polonica, 2003;49(1/2): 29-35. 3. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effect of Essentials oils – A review. Food Chem Toxicol, 2008;46: 446-475. 4. Upadhyay RK, Dwivedi P, Ahmad S. Screening of antimicrobial activity of six plant Essentials oils against pathogenic bacterial strains. Asian J Med Sci, 2010;2(3): 152-158. 5. Prabuseenivasan S , Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant Essentials oils. BCM Compl Altern Med., 2006;6:39-46. 6. Edris AE. Pharmaceutical and therapeutic potentials of Essentials oils and their individual volatile constituents: A review. Phytother Res, 2007;21:308-323. 7. Polombo EA, Semple SJ. Antibacterial activity of traditional Australian medical plants. J Ethnopharmacol, 2001;77:151-157. 8. Dwerk AC, Meadows T. taman (Calophyllum inophyllum) – the African, Asian, Polynesian and Pacific Panacea. Int J Cosm Sci, 2002;24:1-8. 9. Kyle L. Aromatherapy for elder care. Int J Aromather, 1998/99;9(4): 170-177. 10. Muller A. The Pacific Ocean Oils. L’Ami, september 1993; no 5. 11. Burkit HM. The Useful Plants of West Tropical Africa, 2nd Edn. Vol. 2. Families E-I. XX, Royal Botanic Gardens Kew (1994). 12. Holdeman LV, Cato EP, Moore WEC. Anaerobe Laboratory Manual VPI Blacksburg 4th Ed.Baltimore MD, Virginia 1977. 13. Holt JG: Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins (9th ed.). Baltimore MD 1993. 14. Forbes BA, Sahn DF, Weissfeld AS. Bailey and Scott’s Diagnostic Microbiology. 12th Ed. Mosby Elsevier. St Louis 2007. 15. Olsen I, shah HN. Review and outcome of the Meetina held Manchester UK. June 2000, by the International Commitee on the Systematic of Prokarytoes Subcommittee on the Taxonomy of Gram-negative anaerobe rods. Anaerobe, 2001;7:329-331. 16. Kalemba D, Kunicka A. Antibacterial and antifungal properties of Essentials oils. Curr Med. Chem, 2003;10:813-829. 17. De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res Rev, 2000;20(5): 323-349.
otrzymano: 2011-09-01
zaakceptowano do druku: 2011-09-25

Adres do korespondencji:
*dr hab. Anna Kędzia
Department of Oral Microbiology Medical University of Gdańsk
Do Studzienki Str. 38, 80-227 Gdańsk, Poland
tel. (58) 349-21-85
e-mail: zmju@amg.gda.pl

Postępy Fitoterapii 3/2011
Strona internetowa czasopisma Postępy Fitoterapii