Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Fitoterapii 4/2014, s. 239-246
Agata Nahorska, Magdalena Dzwoniarska, *Barbara Thiem
Owoce pigwowca japońskiego (Chaenomeles japonica (Thunb.) Lindl. ex Spach) źródłem substancji biologicznie aktywnych
Fruits of Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) as a source of bioactive compounds
Katedra i Zakład Botaniki Farmaceutycznej i Biotechnologii Roślin, Wydział Farmaceutyczny, Uniwersytet Medyczny im. K. Marcinkowskiego w Poznaniu
Kierownik Katedry i Zakładu: dr hab. Barbara Thiem
Summary
Chaenomeles japonica (Thunb.) Lindl. ex Spach (Japanese quince) is a source of edible aroma fruits containing several bioactive compounds. Chaenomeles fruits have been widely used in traditional Chinese medicine. Polyphenols, such as flavonoids (flavonols, flavones, flavanols, anthocyanins and proantocyanidins), phenolic acids, vitamin C, two triterpenes (oleanolic acid and ursolic acid) and the high content of dietary fiber and pectin in the fruit makes C. japonica a potential effective medicinal plant. Due to its composition and antioxidant properties, Japanese quince fruits are consider as potential source of valuable compounds for medicinal and cosmetic uses and the interesting ingredients for the food industry
Wstęp
Gatunki z rodzaju Chaenomeles znane są w Chinach od tysięcy lat a ich owoce, zwane Mugua, stosowane są w tradycyjnej medycynie chińskiej (1). Zainteresowanie owocami ponownie wzrosło w ostatnich dwudziestu latach z uwagi na możliwość uprawy w Europie, głównie w krajach nadbałtyckich, różnych gatunków i odmian tych roślin pochodzących z Chin i Japonii. Metody hodowli i uprawy wysokiej jakości odmian, głównie pigwowca japońskiego, zostały opracowane w ramach specjalnego programu hodowlanego realizowanego w Szwecji, na Litwie i na Łotwie od 1992 roku (2, 3). Badania nad rodzajem Chaenomeles prowadzone były także w Mołdawii, na Ukrainie i w Finlandii. W Polsce, szerokie badania nad C. japonica i C. speciosa, skupione na składzie biochemicznym i możliwościach wykorzystania owoców w przetwórstwie spożywczym, prowadziła od 1978 r. Lesińska (4-7). O dużym potencjale owoców pigwowca japońskiego jako surowca przemysłowego stanowią: charakterystyczny, atrakcyjny aromat i ich znaczne wartości odżywcze: duża zawartość kwasów organicznych, polifenoli, błonnika, witaminy C oraz składników mineralnych (8).
Owoce pigwowców doceniano w Chinach i szeroko stosowano w medycynie chińskiej w leczeniu różnych chorób, jak reumatyzm, astma, niedobór witaminy C i przeziębienie (9). Według Farmakopei Chińskiej Republiki Ludowej z 2010 r. źródłem surowca leczniczego Mugua są owoce C. speciosa, ale owoce pozostałych trzech gatunków Chaenomeles są często stosowane jako substytut. W Europie owoce znalazły wiele zastosowań w przemyśle spożywczym. Najnowsze badania wskazują również na właściwości lecznicze ekstraktów z owoców i oleju z nasion pigwowca japońskiego (9, 10).
Przynależność systematyczna i taksonomia
Chaenomeles japonica (Thunb.) Lindl. ex Spach należy do rodziny Różowatych (Rosaceae), podrodziny Jabłkowych (Pomoideae). Ma wiele synonimów: Cydonia japonica (Thunb.) Pers., Cydonia lagenaria Loisel, Pyrus japonica Thunb. Nazwy pospolite stosowane w języku angielskim: Japanese quince, Japanese flowering quince, dwarf quince (11).
Nazwa rodzajowa Chaenomeles związana jest z anatomią owocu, pochodzi od greckich słów chainein (dzielić, otwierać się) oraz melon (jabłko). Ze względu na kolor kwiatów pigwowiec japoński nazywany jest także „ognistym krzewem” (12, 13).
Przynależność systematyczna i nazewnictwo pigwowców było do niedawna nieuporządkowane (2). Obecnie do rodzaju Chaenomeles zaliczane są cztery gatunki: C. cathayensis (Hemsl.) Schneider (pigwowiec chiński), C. japonica (Thunb.) Lindl. (pigwowiec japoński), C. speciosa (Sweet) Nakai (pigwowiec okazały, p. właściwy) i C. thibetica Yu (pigwowiec tybetański) (13, 14). Owoce pigwowca często są mylone z pigwą (Cydonia oblonga), należącą do rodzaju Pseudocydonia, która różni się budową i składem chemicznym owoców (7). Pigwowce łatwo się krzyżują w obrębie rodzaju. C. japonica często tworzy mieszańce z pigwowcem okazałym (C. speciosa), dając C. superba Fran (pigwowiec pośredni) (15).
C. japonica to endemiczny gatunek pochodzący z Japonii; do Europy sprowadzony został w 1869 r. Przez krzyżowanie gatunków pigwowców otrzymano ponad 500 odmian ozdobnych. Gatunek C. thibetica opisany w 1963 roku, stosunkowo niedawno wprowadzony do Europy, nie został wykorzystany do hodowli (16). W Polsce popularna jest także odmiana C. x superba, rzadko owocująca (17).
Opis botaniczny i biologia gatunku
C. japonica jest powszechnie znany jako krzew ozdobny. Pochodzi z centralnej i południowej Japonii, gdzie rośnie na wysokości 100-2100 m, na zboczach oraz brzegach rzek i jezior (14). Po introdukcji do Europy gatunek pojawił się w większości krajów jako roślina ozdobna ze względu na swoje walory dekoracyjne; rozpowszechniona jako element parków i ogrodów. Duży potencjał użytkowy owoców pigwowca sprawił, że obecnie uprawiany jest w całej strefie umiarkowanej z uwagi na swoje właściwości ozdobne oraz jadalne owoce.
Pigwowiec japoński jest krzewem o wysokości ok. 1 m, silnie rozłożystym, gęstym, z licznymi pędami ciernistymi, rozgałęzionymi od samej nasady rośliny (ryc. 1).
Ryc. 1. Pokrój krzewu C. japonica (fot. B. Thiem).
Omawiana roślina ma liście odwrotnie jajowate, piłkowane, ciemnozielone, lśniące, nieco skórzaste, o dużych, trwałych przylistkach. Liście o długości do 5 cm, opadają na zimę nie zmieniając koloru. Kwiaty są ceglastoczerwone, pięciokrotne i pięciopłatkowe, z 1 słupkiem, powstałym ze zrośnięcia 5 owocolistków i licznymi pręcikami (40-60), o średnicy do 3 cm, rosnące w pęczkach po 1-6, głównie w dolnej części krzewu. Kwitną w kwietniu, czasem także jesienią razem z owocami. Kwiaty pozostałych 3 gatunków mogą mieć kolor biały, pomarańczowy, różowy lub są dwukolorowe. Owoce są kuliste, o nieregularnym kształcie i zróżnicowanej wielkości, budowie małych jabłek, o średnicy do 5 cm i masie nie przekraczającej 50 g (ryc. 2). Niedojrzałe są zielone i nagie, a gdy dojrzeją – żółkną i pokrywają się warstwą woskowej kutikuli (17). Owoce są bogate w nasiona (5-9% świeżej masy). W bardzo dużej komorze nasiennej, o skórzastej wyściółce, rozwija się ok. 50-80 nasion. Nasiona nie są ze sobą pozlepiane galaretowatą masą, co ma miejsce u pigw (12, 15, 19).
Ryc. 2. Owoce C. japonica (18).
Wszystkie pigwowce są roślinami diploidalnymi o jednakowej liczbie chromosomów (2n = 34). Pigwowiec japoński należy do roślin zapylanych krzyżowo i wyposażony jest w silny system zabezpieczający przed samozapyleniem (20). Rośliny rozmnażane z nasion są mocno heterogenne. Rozmnażanie klonalne, wybierane najczęściej w celu zachowania odmiany, polega na stosowaniu półzdrewniałych sadzonek pobranych z tegorocznych pędów lub z odkładów z matecznej rośliny, które często pojawiają się przy uprawie tego krzewu. Dla C. japonica opracowano również metody mikropropagacji i hodowli komórkowych w warunkach in vitro (21, 22). Pigwowce owocują 3-4 lata po posadzeniu. Dobrze rosną na stanowiskach słonecznych i półcienistych, na glebie bogatej w wapń, raczej suchej. Krzew nie ma specjalnych wymagań glebowych. C. japonica jest najbardziej mrozoodpornym krzewem z pigwowców, odpornym również na inne czynniki środowiskowe (17).
Skład chemiczny owoców
Informacje o składzie chemicznym owoców pigwowców są ograniczone. Badania fitochemiczne owoców pigwowca japońskiego wskazują na bardzo dużą zawartość kwasów organicznych. W soku owoców wykryto głównie kwas jabłkowy (ryc. 3) oraz kwas bursztynowy i chinowy, przy braku innych kwasów organicznych, zwykle występujących w owocach (23).
Kwas jabłkowyKwas askorbinowy
Ryc. 3. Wzory strukturalne kwasu jabłkowego i askorbinowego.
Ich kwasowość ogólna, w przeliczeniu na kwas jabłkowy, wynosi średnio 3,5%. Owoce pigwowca charakteryzują się także wysoką zawartością kwasu askorbinowego (ryc. 3) i jego dużą trwałością podczas przechowywania i przetwarzania. Zawartość witaminy C wynosi od 55-92 mg/100 g owoców, a jej aktywność jest wysoka z uwagi na obecność w owocach pigwowca bioflawonoidów (7).
Owoce pigwowca i uzyskany z nich sok mają stosunkowo dużą zawartość witaminy C. Średnio wynosi ona 59 mg na 100 ml soku. Jest to wartość porównywalna z zawartością witaminy C w owocach cytrusowych (23). W owocach zawartość witaminy C waha się w granicach 100 mg na 100 g s.m. (24).
Owoce pigwowca japońskiego zawierają 20 związków fenolowych. Są to kwasy fenolowe i flawonoidy. Fronc i Oszmiański (7) stwierdzili dużą zawartość związków fenolowych w owocach (645 mg/100 g sumy polifenoli). Analizy innych autorów z użyciem HPLC-DAD/ESI-MS/MS, wykazały w owocni obecność flawan-3-oli, włączając katechinę, epikatechinę i oligomery procyjanidyn, które stanowią ok. 95% sumy polifenoli. Świadczy to, że głównymi związkami fenolowymi w owocach są proantocyjanidyny (25).
Pozostałe polifenole w owocni to kwas chlorogenowy i glukozydy kwercetyny (25, 26). Badania zawartości w owocach reprezentatywnych związków polifenolowych (kwas chlorogenowy, katechina, procyjanidyna B1, epikatechina i procyjanidyna B2) wskazały na duże ilości epikatechiny i proantocyjanidyny B2 (25). Wzory chemiczne głównych związków polifenolowych obecnych w owocach C. japonica przedstawiono na rycinie 4.
Ryc. 4. Główne związki polifenolowe obecne w owocach C. japonica.
Stwierdzono obecność polifenoli zidentyfikowanych jako monomery, dimery, trimery i pentamery procyjanidyn. Chemiczne analizy owoców pigwowców wykazały u C. japonica także obecność dwóch triterpenów: kwasu oleanolowego i kwasu ursolowego (25) (ryc. 5, tab. 1).
Kwas oleanolowyKwas ursolowy
Ryc. 5. Wzory strukturalne kwasu oleanolowego i kwasu ursolowego.
Tabela 1. Zawartość kwasu oleanolowego i ursolowego w owocach pigwowców w świeżej masie (ś.m.) (25).
Nazwa roślinyKwas oleanolowy (μg/g ś.m.)Kwas ursolowy (μg/g ś.m.)Razem (μg/g ś.m.)
C. japonica88,3223,7312,0
C. speciosa69,793,9162,7
C. thibetica106,3272,7379,0
C. cathayensis338,747,0386,0
W owocni i nasionach zidentyfikowano metodą dwukierunkowej chromatografii cienkowarstwowej (2D-TLC) oraz wysokosprawnej chromatografii cieczowej (HPLC) czternaście fenolokwasów. Dominującymi związkami były: kwas kawowy, protokatechowy, galusowy, p-hydroksybenzoesowy, p-kumarowy, syryngowy i wanilinowy (27). Owoce pigwowca japońskiego zalicza się do grupy ubogich w cukry proste, o dobrych proporcjach fruktozy i glukozy (8).
W porównaniu z innymi owocami pigwowiec japoński wytwarza owoce bogate w składniki mineralne. Są to głównie żelazo i molibden, pod względem których owoce pigwowca należą do najzasobniejszych. Na uwagę zasługuje także duża zawartość magnezu, sodu, miedzi, cynku i fosforu (28).
W owocach pigwowca japońskiego wykazano znaczne ilości cennego błonnika pokarmowego (32 g/100 g suchych owoców). Jego zawartość w miąższu owoców wynosi aż 53 g/100 g całkowitego błonnika wyizolowanego z rośliny. Pektyny obecne w owocach zlokalizowane są głównie w miąższu owoców; średnia zawartość to 11 g pektyn/100 g suchych owoców i 1,4 g/100 g świeżych owoców, co stawia je na równi z jabłkami. Natomiast skórka bogata jest w związki białkowe oraz lipidowe (29-31).
Duże ilości polisacharydów w ścianach komórkowych owoców (celulozy, pektyn i hemicelulozy) czyni je potencjalnym źródłem pokarmowego błonnika i pektyn, których jest ok. 2-krotnie więcej niż w jabłkach. Źródłem pektyn są przede wszystkim niedojrzałe owoce (0,85-1,28%), ponieważ podczas dojrzewania owoców pektyny ulegają częściowej degradacji do monosacharydów (7, 32).
Badano również lotne związki zapachowe owoców C. japonica. Metodą chromatografii gazowej sprzężonej ze spektrometrią mas oznaczono 21 związków lotnych (estry, alkohole, terpeny) i dwa nielotne – mannitol i sorbitol. Stwierdzono, że estry i alkohole są odpowiedzialne za owocowy aromat pigwowca japońskiego (33, 34).
W badaniach wykazano, że zawartość soku w świeżych owocach jest stosunkowo wysoka i waha się w przedziale 41-52% masy owoców. Sok charakteryzuje się silną kwasowością, niskim pH i wysoką zawartością witaminy C (59 mg/100 g soku) oraz związków fenolowych (23).

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp tylko do jednego, POWYŻSZEGO artykułu w Czytelni Medycznej
(uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony)

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem , należy wprowadzić kod:

Kod (cena 19 zł za 7 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

 

 

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 49 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

otrzymano: 2014-10-30
zaakceptowano do druku: 2014-11-12

Adres do korespondencji:
*dr hab. Barbara Thiem
Katedra i Zakład Botaniki Farmaceutycznej
i Biotechnologii Roślin
Wydział Farmaceutyczny, Uniwersytet Medyczny
im. K. Marcinkowskiego w Poznaniu
tel. +48 (61) 66-87-847, fax (61) 66-87-861
e-mail: bthiem@ump.edu.pl

Postępy Fitoterapii 4/2014
Strona internetowa czasopisma Postępy Fitoterapii