Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Fitoterapii 2/2011, s. 106-112
*Joanna Kołodziejczyk-Czepas, Beata Olas
Garcinia – wartościowe rośliny lecznicze w profilaktyce chorób układu krążenia
Garcinia – a valuable medicinal plants in prophylaxis of cardiovascular diseases
Katedra Biochemii Ogólnej, Uniwersytet Łódzki
Kierownik Katedry: prof. dr hab. Barbara Wachowicz
Summary
Garcinia (Guttiferae) is a large genus of polygamus trees or shrubs commonly found in tropical Asia and Africa, and consists of over 200 species. Garcinia indica (dried rind known as “kokam”) is an Indian spice, used in many parts of the country for making several vegetarian and non-vegetarian “curry” preparations. Many therapeutic effects of Garcinia indica fruits have been described in traditional medicine. Garcinol, a natural biologically active compound is a polyisoprenylated benzophene derivative, isolated from the Garcinia indica fruit rind. Kokam contains also other compounds: hydroxycitric acid, citric acid, malic acid, polyphenols, carbohydrates, anthocyanin pigments and ascorbic acid. Recently, garcinol has been widely investigated because of its beneficial health properties, including anti-inflammatory and antioxidative activity. In the article, the biological activities of compounds naturally occurring in Garcinia (garcinol and guttiferone K) and their role in the protection of the cardiovascular system are described.
Wstęp
Choroby układu krążenia występujące samodzielnie lub jako powikłania innych schorzeń stanowią trudne wyzwanie dla współczesnej medycyny. Rozwój nowych metod leczenia jest wspierany przez propagowanie zdrowego stylu życia, obejmującego prawidłowe żywienie. Wiele badań potwierdza istotny związek pomiędzy dietą bogatą w składniki pochodzenia roślinnego a zmniejszeniem ryzyka wystąpienia chorób cywilizacyjnych (1). Trwają poszukiwania mające na celu opracowanie nowych i bardziej skutecznych terapii chroniących układ krążenia. W badaniach tych zwraca się szczególną uwagę na substancje i wyciągi roślinne znane od wieków i stosowane w medycynie tradycyjnej różnych kultur. Prowadzone są liczne badania, mające na celu poznanie mechanizmów ich dobroczynnego działania na organizm człowieka i możliwości zastosowania zarówno w profilaktyce, jak i w leczeniu wielu chorób.
Przykładem znanych od dawna roślin leczniczych są drzewa z rodzaju Garcinia, zawierające wiele aktywnych biologicznie związków, w tym garcinol. Suszona skórka owoców Garcinia indica jest składnikiem przypraw stosowanych w kuchni indyjskiej. Natomiast ekstrakty z Garcinia cambogia stosowane były od dawna w medycynie tradycyjnej jako lek w chorobach nowotworowych i wrzodach, leczeniu hemoroidów, biegunek oraz jako środek przeciwgorączkowy (2). Owoce Garcinia cambogia są szczególnie bogate w pochodną garcinolu – guttiferon K (ryc. 1). Obecnie dostępne dane sugerują, że garcinol i jego pochodne (na przykład guttiferon K) zawarte w tych roślinach mogą być szczególnie obiecującymi związkami o działaniu profilaktycznym i terapeutycznym. Zaobserwowano, że przede wszystkim garcinol wykazuje m.in. działanie przeciwzapalne, przeciwnowotworowe, przeciwbakteryjne oraz antyoksydacyjne (3, 4). Ponieważ wiadomo, że stres oksydacyjny jest zaangażowany w patogenezę wielu chorób, przeciwutleniające działanie garcinolu i jego pochodnych może być szczególnie istotne w jego korzystnym wpływie na układ krążenia.
Ryc. 1. Struktura chemiczna garcinolu i jego pochodnej – guttiferonu K (wg 17).
Występowanie i właściwości biologiczne garcinolu
Garcinol (camboginol) jest naturalnym roślinnym polifenolem występującym w roślinach z rodziny Guttiferae, z rodzaju Garcinia (Garcinia cambogia, Garcinia indica, Garcinia huillkensis i in.) (5). Drzewa te występują w tropikalnych regionach Azjii i Afryki; z ponad 200 znanych gatunków Garcinia, 35 występuje na terenie Indii (6). Są bogatym źródłem drugorzędowych metabolitów, takich jak ksantony, flawonoidy, benzofenony, laktony i kwasy fenolowe. Z tego względu stanowią potencjalne źródło aktywnych biologicznie związków o korzystnym działaniu na organizm człowieka. Wysuszona skórka owocu Garcinia (określana często jako „kokam”), zawierająca 2-3% żółtego barwnika – garcinolu, spożywana jest jako składnik przyprawy curry. Stanowi także składnik wielu kosmetyków, jak również leków stosowanych w medycynie tradycyjnej Indii. Ekstrakty ze skórki owocu Garcinia zawierają oprócz garcinolu jego bezbarwny izomer (isogarcinol), kwas hydroksycytrynowy i jego lakton, kwas cytrynowy, kwas szczawiowy oraz liczne polifenole. Pod względem biochemicznym garcinol jest poliizoprenylowaną pochodną benzofenonu (7, 8).
Antyoksydacyjne działanie garcinolu
Mechanizmy antyoksydacyjnego działania garcinolu i jego pochodnych nie są jak do tej pory w pełni poznane. Badania nad garcinolem prowadzone w latach 80. XX wieku zasugerowały, że nie wykazuje on właściwości antyoksydacyjnych (9). Dlatego też większość prowadzonych dotychczas badań nad biologicznym działaniem tego związku koncentrowała się głównie na jego przeciwzapalnej i przeciwnowotworowej aktywności. Pojawia się jednak coraz więcej danych wskazujących na to, że garcinol może również wykazywać silne działanie antyoksydacyjne. Stwierdzono, że związek ten zmiata anionorodnik ponadtlenkowy, rodnik hydroksylowy oraz rodnik metylowy (10, 11). W warunkach in vitro także ekstrakt z G. indica już w niskich stężeniach (25 i 50 ppm) jest bardzo efektywnym zmiataczem wolnych rodników (12). Garcinol może także znacznie silniej niż α-tokoferol hamować produkcję rodnika hydroksylowego, powstającego w reakcji Fentona (13). Badania Mishra i wsp. (14) wykazały natomiast, że ekstrakt z G. indica lepiej niż inne preparaty roślinne przeciwdziała peroksydacji lipidów w mitochondriach. Aktywność antyoksydacyjna garcinolu wydaje się opierać na jego zdolności do oddawania atomu wodoru w reakcjach biochemicznych (15), prawdopodobnie głównymi regionami odpowiedzialnymi za przeciwutleniające działanie garcinolu są 1,3-diketon oraz część pierścienia fenolowego (16).
W wyniku reakcji garcinolu z rodnikiem nadtlenkowym pochodzącym z 2,2’-azo-bis-izobutyronitrylu (AIBN – inicjator używany w reakcjach polimeryzacji rodnikowej), zespół Sang i wsp. (13) wyizolowali i zidentyfikowali cztery główne pochodne garcinolu (1): związek będący pochodną hydroksygarcinolu (2), cambogin (isogarcinol, C38H50O6) (3), GDPPH-1 (4) i GDPPH-2 (5) (ryc. 2) (13). Utworzenie dwóch dodatkowych produktów (2 i 3) reakcji garcinolu z rodnikiem nadtlenkowym może świadczyć, że w mechanizmie antyoksydacyjnym garcinolu oprócz 1,3-diketonu i pierścienia fenolowego bierze również udział podwójne wiązanie grupy izoprenylowej. Kiedy garcinol reaguje z rodnikiem nadtlenkowym, poprzez przeniesienie pojedynczego elektronu (4, 13), w wyniku deprotonacji grupy hydroksylowej 1,3-diketonu, który uległ enolizacji, powstaje niesparowany elektron. Jeśli reakcja zostaje zainicjowana na grupie hydroksylowej przy C-3, powstają związki 2 i 4. Natomiast, jeśli reakcja rozpocznie się na grupie hydroksylowej przy C-1 powstają związki 3 i 5. Opierając się na chemicznej strukturze czterech produktów reakcji zaproponowano antyoksydacyjny mechanizm działania garcinolu, który przedstawiono na rycinie 3 (13).
Ryc. 2. Struktura chemiczna garcinolu (1) i jego pochodnych (2-5) (wg 13).
Ryc. 3. Mechanizm działania antyoksydacyjnego i tworzenia pochodnych garcinolu (2-5) (wg 13).
Ponadto poprzez pomiar różnych markerów peroksydacji lipidów, w tym pomiar stężenia związków reagujących z kwasem tiobarbiturowym wykazano, że garcinol i jego pochodna – guttiferon K hamują peroksydację lipidów płytek krwi, jak i osocza, wywołaną działaniem nadtlenoazotynu, który powstaje w reakcji tlenku azotu z anionorodnikiem ponadtlenkowym (17). Nadtlenoazotyn (ONOO) jest jednym z głównych czynników stresu oksydacyjnego powstających w układzie krążenia. W warunkach in vivo głównie powstaje on w pobliżu komórek generujących jednocześnie duże ilości anionorodnika ponadtlenkowego, czy tlenku azotu (komórki śródbłonka, aktywowane makrofagi/monocyty, neutrofile) (18, 19). Ze względu na swoje silne właściwości oksydacyjne i nitrujące, nadtlenoazotyn uszkadza różne rodzaje cząsteczek, nie tylko lipidy. Najbardziej narażone na jego działanie są białka oraz kwasy nukleinowe. Ekspozycja białek na działanie ONOO powoduje utlenianie reszt aminokwasowych, nitrowanie tyrozyny i powstawanie grup karbonylowych. Modyfikacje wywołane działaniem tego związku przyczyniają się do uszkodzeń trzeciorzędowej struktury białek, a tym samym do zmian w funkcjonowaniu tych struktur (20-22).

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp tylko do jednego, POWYŻSZEGO artykułu w Czytelni Medycznej
(uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony)

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem , należy wprowadzić kod:

Kod (cena 19 zł za 7 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

 

 

Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu wraz z piśmiennictwem oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 49 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

otrzymano: 2011-05-28
zaakceptowano do druku: 2011-06-21

Adres do korespondencji:
*dr Joanna Kołodziejczyk-Czepas
Katedra Biochemii Ogólnej, Uniwersytet Łódzki
ul. Pomorska 141/143, 90-236 Łódź
tel./fax: (42) 635-44-84
e-mail: joannak@biol.uni.lodz.pl

Postępy Fitoterapii 2/2011
Strona internetowa czasopisma Postępy Fitoterapii