Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Nowa Medycyna 2/2009, s. 149-150
*Kristian Schřnning
Respiratory Viruses – their detection and significance in respiratory infections
Department of Clinical Microbiology, Hvidovre University Hospital
Acute respiratory disease causes the majority of morbidities in the community in temperate countries. The contribution of respiratory viruses of to the disease burden in the community as well as in the hospital setting is becoming well recognized (Tsolia et al, 2004; Jennings et al., 2007; Johnstone et al., 2008) as methods for their detection has become increasingly refined. Virus culture and especially the application of molecular techniques to clinical samples in the research setting has led to and the description of novel respiratory virus as possible agents causing human disease. Examples include human coronavirus NL63 (Fouchier et al., 2004) and HKU1 (Woo et al., 2005), human Bocavirus (Allander et al., 2005), polyomavirus Wu (Allander et al., 2007) and Ki (Gaynor et al., 2007). The application of molecular techniques to clinical samples has also led to the description of new syndromes caused by well known agents. For example Pneumocystis jirovecii, now generally accepted as a fungus, is associated with a "viral-like” self-resolving syndrome in immunocompetent infants (Larsen et al., 2007). To further complicate the matter co-infections are frequent and evidence suggest that viral and bacterial coinfection may cause an synergistic increase in virulence (Bakeletz, 1995; Jennings et al., 2008). The time interval between the description of a novel agent and the possible application of a diagnostic test in a clinical setting has considerably shortened with the advent of molecular tests. This advantageous development has in turn yielded less time for clinical evidence to accumulate and this in turn makes clinical interpretation of test results more difficult. In this review, I will discuss recent advances in molecular detection of respiratory viruses, how testing is done typically done in Denmark with special reference to my own laboratory and finally discuss the problems of clinical interpretation of new diagnostic tests of new agents using human bocavirus as an example.

Diagnostic methods
Virus isolation has been a golden standard due to its inherent high specificity, however, in Denmark it has never been established as a routine diagnostic test due to high turn-around time, high cost and labour intensiveness. Serological tests have been valuable in seroepidemiological surveys, but has had limited impact in routine clinical testing as paired sera are seldom obtained. Direct fluorescent antibody (DFA) tests have been largely abandoned and replaced by molecular methods. ELISA and immunochromatographic antigen demonstration of virus-Ag is still important as rapid tests and point of care-tests in Denmark.
PCR and other molecular methods (NATs) for detection of respiratory viruses are generally believed to be highly specific and sensitivity compares favourably with virus isolation and DFA (Kim et al., 2009; Nolte et al., 2007). In particular the detection of virus that are difficult to isolate by culture such as rhinovirus and coronavirus are considerably improved by NAT. At Hvidovre Hospital, Copenhagen we are currently opting for in-house real-time TaqMan-assays and are currently offering individual tests for RSV-A/B, Influenza A and B, Parainfluenza 1-3, human metapneumovirus, adenovirus, rhinovirus and bocavirus. Performing individual assays for an increasing number of possible pathogens is both labour demanding and costly in reagents. A solution to this problem is multiplexing; a multiplex assay analyzes for multiple pathogens in a single reaction. This may be technically demanding to accomplish without loosing sensitivity. Different commercial companies are now providing different solutions to diagnostic testing for respiratory virus. Abbotts xTag respiratory virus panel is a multiplex PCR assay detecting 20 different respiratory virus using a Luminex suspension microarray for detection. This assay has obtained FDA approval as an IVD and has been favourably compared with in-house NATs (Pabbaraju et al., 2008). Qiagens Resplex II is a similar highly multiplexed PCR assay (18 analytes) using the same detection system and has in an older version been compared to testing by individual NAT assays (Li et al., 2007). Other companies offer other solutions with using different detection strategies; e.g. Seeplex RV12 (Kimet al., 2009). The advantage of these highly multiplexed systems is that they allow detection of pathogens not suspected by the clinician and therefore increase the diagnostic yield compared to individual tests specified by the clinician. Companies will be competing for providing the most complete solutions with the most extensive test reports. This will in turn make clinical interpretation more complex and the need for clinical studies to aid this more pertinent. Clinical investigations of pediatric cases of human bocavirus infections may illustrate this point.
Human Bocavirus (HboV) – A commensal or a pathogen?

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Allander, T., M.T. Tammi, M. Eriksson, A. Bjerkner, A. Tiveljung-Lindell, and B. Andersson. 2005. Cloning of a human parvovirus by molecular techniques by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA 102:12891-12896. 2. Allander, T., K. Andreasson, S. Gupta, A. Bjerkner, M.A. Persson, T. Dalianis, T. Ramqvist, and B. Andersson. 2007. Identification of a third polyomavirus. J. Virol 81:4130-4136. 3. Bakeletz, L.O. Viral potentation of bacterial superinfection of the respiratory tract. Trends Microbiol. 3:110-114. 4. Brieu, N., G. Guyon, M. RodiŔre, M. Segondy, and V. Foulongne. 2008. Human Bocavirus infection in children with respiratory tract disease. Pediatr. Infect. Dis. J. 27:969-973. 5. Fouchier, R.A.M., N.G. Hartwig, T.M. Bestebroer, B. Niemeyer, J.C. de Jong, J.H. Simon, and A.D.M.E. Osterhaus. 2004. A previously undescribed coronavirus associated with repiratory disease in humans. Proc. Natl. Acad. Sci. USA 101:6212-6216. 6. Gaynor, A.M., M.D. Nissen, D.M. Whiley, I.M. Mackay, S.B. Lambert, G. Wu, D.C. Brennan, G.A. Storch, T.P. Sloots, and D. Wang. 2007. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 4:e64. 7. Jennings, L.C., T.P. Anderson, K.A. Beynon, A. Chua, R.T.R. Laing, A.M. Wermo, S.A. Young, S.T. Chambers, and D.R. Murdoch. 2008. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax 63:42-48. 8. Johnstone, J., S.R. Majumdar, J.D. Fox, and T.J. Marrie. 2008. Viral infection in adults hospitalized with community-acquired pneumonia. Chest 134:1141-1148. 9. Kim, S.R., C.S. Li, and N.Y. Lee. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay. J. Virol. Methods 156:111-116. 10. Kupfer, B.J., J. Vehreschild, O. Cornely, R. Kaiser, G. Plum, S. Viazov, C. Franzen, R.L. Tillmann, A. Simon, A. Muller, and O. Schildgen. 2006. Severe pneumonia and human bocavirus in an adult. Emerg. Infect. Dis. 12:1614-1616. 11. Larsen, H.H., M.L. von Linstow, B. Lundgren, B. H°gh, H. Westh, and J.D. Lundgren. 2007. Primary pneumocystis infection in infants hospitalized with acute respiratory tract infection. Emerg. Infect. Dis. 13:66-72. 12. Li, H, M.A. McCormac, Rw Estes, SE Sefers, RK Dare, JD Chappell, DD Erdman, PF Wright, YW Tang. 2007. Simultaneous detection and high-throughput identification of a panel of RNA viruses causing respiratory infections. J. Clin. Microbiol. 45:2105-2109. 13. Longtin, J., M. Bastien, R. Gilca, E. Leblanc, G. de Serres, M.G. Bergeron, and G. Boivin. 2008. Human Bocavirus infections in hospitalized children and adults. Emerg. Infect. Dis. 14:217-221. 14. Nolte, F.S., D.J. Marshall, C. Rasberry, S. Schievelbein, G.G. Banks, G.A. Storch, M.Q. Arens, R.S. Buller, J.R. Prudent. 2007. Multicode-PLx system for multiplexed detection of seventeen respiratory viruses. J. Clin. Microbiol. 45:2779-2786. 15. Pabbaraju, K., K.L. Tokaryk, S. Wong, and J.D. Fox. 2008. Comparison of the Luminex xTag respiratory virus panel with in-house nucleic amplification tests for diagnosis of respiratory virus infections. J. Clin. Microbiol. 46:3056-3062. 16. Tsolia M.N., S. Psarras, A. Bossios, H. Audi, M. Paldanius, D. Gougiotis, K. Kallergi, D.A. Kafetzis, A. Constantopoulos, and N.G. Papadopoulos. 2004. Etiology of community-acquired pneumonia in hospitalized school-age children: Evidence for high prevalence of viral infections. Clin. Infect. Dis. 39:681-686. 17. Woo, P.C.Y., S.K.P. Lau, C-m Chu, K-h Chan, H-w Tsoi, Y. Huang, B.H.L. Wong, R.W.S. Poon, J.J. Cai, W-k Luk, L.L.M. Poon, S.S.Y. Wong. Y. Guan, J.S.M. Peiris, and K-y Yuen. 2005. Characterization and complete genome sequence of a novel coronavirus, Coronavirus HKU1, from patients with pneumonia. J. Virol. 79:884-895.
otrzymano: 2009-03-10
zaakceptowano do druku: 2009-04-02

Adres do korespondencji:
*Kristian Schřnning
Department of Clinical Microbiology, Hvidovre University Hospital, Kettegĺrda Alle 30, 2650 Hvidovre DK
tel.: +45 363-224-11
e-mail: kristian.schoenning@hvh.regionh.dk

Nowa Medycyna 2/2009
Strona internetowa czasopisma Nowa Medycyna