Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Nowa Medycyna 2/2009, s. 149-150
*Kristian Schřnning
Respiratory Viruses – their detection and significance in respiratory infections
Department of Clinical Microbiology, Hvidovre University Hospital
Acute respiratory disease causes the majority of morbidities in the community in temperate countries. The contribution of respiratory viruses of to the disease burden in the community as well as in the hospital setting is becoming well recognized (Tsolia et al, 2004; Jennings et al., 2007; Johnstone et al., 2008) as methods for their detection has become increasingly refined. Virus culture and especially the application of molecular techniques to clinical samples in the research setting has led to and the description of novel respiratory virus as possible agents causing human disease. Examples include human coronavirus NL63 (Fouchier et al., 2004) and HKU1 (Woo et al., 2005), human Bocavirus (Allander et al., 2005), polyomavirus Wu (Allander et al., 2007) and Ki (Gaynor et al., 2007). The application of molecular techniques to clinical samples has also led to the description of new syndromes caused by well known agents. For example Pneumocystis jirovecii, now generally accepted as a fungus, is associated with a "viral-like” self-resolving syndrome in immunocompetent infants (Larsen et al., 2007). To further complicate the matter co-infections are frequent and evidence suggest that viral and bacterial coinfection may cause an synergistic increase in virulence (Bakeletz, 1995; Jennings et al., 2008). The time interval between the description of a novel agent and the possible application of a diagnostic test in a clinical setting has considerably shortened with the advent of molecular tests. This advantageous development has in turn yielded less time for clinical evidence to accumulate and this in turn makes clinical interpretation of test results more difficult. In this review, I will discuss recent advances in molecular detection of respiratory viruses, how testing is done typically done in Denmark with special reference to my own laboratory and finally discuss the problems of clinical interpretation of new diagnostic tests of new agents using human bocavirus as an example.
Diagnostic methods
Virus isolation has been a golden standard due to its inherent high specificity, however, in Denmark it has never been established as a routine diagnostic test due to high turn-around time, high cost and labour intensiveness. Serological tests have been valuable in seroepidemiological surveys, but has had limited impact in routine clinical testing as paired sera are seldom obtained. Direct fluorescent antibody (DFA) tests have been largely abandoned and replaced by molecular methods. ELISA and immunochromatographic antigen demonstration of virus-Ag is still important as rapid tests and point of care-tests in Denmark.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.

Płatny dostęp tylko do jednego, POWYŻSZEGO artykułu w Czytelni Medycznej
(uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony)

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu, należy wprowadzić kod:

Kod (cena 19 zł za 7 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.



Płatny dostęp do wszystkich zasobów Czytelni Medycznej

Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu oraz WSZYSTKICH około 7000 artykułów Czytelni, należy wprowadzić kod:

Kod (cena 49 zł za 30 dni dostępu) mogą Państwo uzyskać, przechodząc na tę stronę.
Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.

1. Allander, T., M.T. Tammi, M. Eriksson, A. Bjerkner, A. Tiveljung-Lindell, and B. Andersson. 2005. Cloning of a human parvovirus by molecular techniques by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA 102:12891-12896. 2. Allander, T., K. Andreasson, S. Gupta, A. Bjerkner, M.A. Persson, T. Dalianis, T. Ramqvist, and B. Andersson. 2007. Identification of a third polyomavirus. J. Virol 81:4130-4136. 3. Bakeletz, L.O. Viral potentation of bacterial superinfection of the respiratory tract. Trends Microbiol. 3:110-114. 4. Brieu, N., G. Guyon, M. RodiŔre, M. Segondy, and V. Foulongne. 2008. Human Bocavirus infection in children with respiratory tract disease. Pediatr. Infect. Dis. J. 27:969-973. 5. Fouchier, R.A.M., N.G. Hartwig, T.M. Bestebroer, B. Niemeyer, J.C. de Jong, J.H. Simon, and A.D.M.E. Osterhaus. 2004. A previously undescribed coronavirus associated with repiratory disease in humans. Proc. Natl. Acad. Sci. USA 101:6212-6216. 6. Gaynor, A.M., M.D. Nissen, D.M. Whiley, I.M. Mackay, S.B. Lambert, G. Wu, D.C. Brennan, G.A. Storch, T.P. Sloots, and D. Wang. 2007. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 4:e64. 7. Jennings, L.C., T.P. Anderson, K.A. Beynon, A. Chua, R.T.R. Laing, A.M. Wermo, S.A. Young, S.T. Chambers, and D.R. Murdoch. 2008. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax 63:42-48. 8. Johnstone, J., S.R. Majumdar, J.D. Fox, and T.J. Marrie. 2008. Viral infection in adults hospitalized with community-acquired pneumonia. Chest 134:1141-1148. 9. Kim, S.R., C.S. Li, and N.Y. Lee. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay. J. Virol. Methods 156:111-116. 10. Kupfer, B.J., J. Vehreschild, O. Cornely, R. Kaiser, G. Plum, S. Viazov, C. Franzen, R.L. Tillmann, A. Simon, A. Muller, and O. Schildgen. 2006. Severe pneumonia and human bocavirus in an adult. Emerg. Infect. Dis. 12:1614-1616. 11. Larsen, H.H., M.L. von Linstow, B. Lundgren, B. H°gh, H. Westh, and J.D. Lundgren. 2007. Primary pneumocystis infection in infants hospitalized with acute respiratory tract infection. Emerg. Infect. Dis. 13:66-72. 12. Li, H, M.A. McCormac, Rw Estes, SE Sefers, RK Dare, JD Chappell, DD Erdman, PF Wright, YW Tang. 2007. Simultaneous detection and high-throughput identification of a panel of RNA viruses causing respiratory infections. J. Clin. Microbiol. 45:2105-2109. 13. Longtin, J., M. Bastien, R. Gilca, E. Leblanc, G. de Serres, M.G. Bergeron, and G. Boivin. 2008. Human Bocavirus infections in hospitalized children and adults. Emerg. Infect. Dis. 14:217-221. 14. Nolte, F.S., D.J. Marshall, C. Rasberry, S. Schievelbein, G.G. Banks, G.A. Storch, M.Q. Arens, R.S. Buller, J.R. Prudent. 2007. Multicode-PLx system for multiplexed detection of seventeen respiratory viruses. J. Clin. Microbiol. 45:2779-2786. 15. Pabbaraju, K., K.L. Tokaryk, S. Wong, and J.D. Fox. 2008. Comparison of the Luminex xTag respiratory virus panel with in-house nucleic amplification tests for diagnosis of respiratory virus infections. J. Clin. Microbiol. 46:3056-3062. 16. Tsolia M.N., S. Psarras, A. Bossios, H. Audi, M. Paldanius, D. Gougiotis, K. Kallergi, D.A. Kafetzis, A. Constantopoulos, and N.G. Papadopoulos. 2004. Etiology of community-acquired pneumonia in hospitalized school-age children: Evidence for high prevalence of viral infections. Clin. Infect. Dis. 39:681-686. 17. Woo, P.C.Y., S.K.P. Lau, C-m Chu, K-h Chan, H-w Tsoi, Y. Huang, B.H.L. Wong, R.W.S. Poon, J.J. Cai, W-k Luk, L.L.M. Poon, S.S.Y. Wong. Y. Guan, J.S.M. Peiris, and K-y Yuen. 2005. Characterization and complete genome sequence of a novel coronavirus, Coronavirus HKU1, from patients with pneumonia. J. Virol. 79:884-895.
otrzymano: 2009-03-10
zaakceptowano do druku: 2009-04-02

Adres do korespondencji:
*Kristian Schřnning
Department of Clinical Microbiology, Hvidovre University Hospital, Kettegĺrda Alle 30, 2650 Hvidovre DK
tel.: +45 363-224-11

Nowa Medycyna 2/2009
Strona internetowa czasopisma Nowa Medycyna