Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 10/2014, s. 703-707
*Maria Krajewska1, Anna Kucharska1, 2, Anna Majcher2, Beata Pyrżak1, 2
Ocena zależności między stężeniem witaminy D w surowicy krwi a wybranymi parametrami antropometrycznymi i metabolicznymi u dzieci z otyłością prostą
Plasma vitamin D levels in obese children: relationship with selected anthropometric and metabolic parameters
1Department of Pediatrics and Endocrinology, Independent Public Children’s Clinical Hospital, Medical University of Warsaw
Head of Department: Beata Pyrżak, MD, PhD
2Department of Pediatrics and Endocrinology, Medical University of Warsaw
Head of Department: Beata Pyrżak, MD, PhD
Streszczenie
Wstęp. Otyłość i nadwaga stanowią narastający problem na całym świecie, szczególnie wśród dzieci i młodzieży. Wyniki badań wskazują na istnienie zależności pomiędzy stężeniem 25(OH)D w surowicy krwi a zawartością tkanki tłuszczowej. Stężenie 25(OH)D u dzieci otyłych jest niższe niż u dzieci z prawidłową masą ciała. Ostatnie badania sugerują istnienie zależności pomiędzy występowaniem niedoboru witaminy D a nieprawidłową tolerancją glukozy, cukrzycą, zaburzeniami gospodarki lipidowej, zespołem metabolicznym, ryzykiem wystąpienia chorób układu sercowo-naczyniowego i nadciśnieniem tętniczym.
Cel pracy. Celem badania była ocena zależności pomiędzy stężeniem 25(OH)D w surowicy krwi a wybranymi parametrami antropometrycznymi i metabolicznymi u dzieci z otyłością prostą.
Materiał i metody. Przeprowadzono retrospektywną analizę pacjentów z otyłością prostą, którzy byli diagnozowani w Klinice Pediatrii i Endokrynologii Warszawskiego Uniwersytetu Medycznego. Do badania włączono 65 pacjentów z otyłością prostą w wieku 5-18 lat. U wszystkich dzieci wykonano test OGTT z oceną stężenia insuliny, oceniono gospodarkę lipidową (stężenie cholesterolu całkowitego, LDL, HDL, trójglicerydów w surowicy krwi), stężenie 25(OH)D w surowicy, obliczono współczynnik aterogenności, HOMA-IR, wykonano pomiary antropometryczne.
Wyniki. Przeanalizowano 65 pacjentów (33 dziewczynki i 32 chłopców) w wieku 12,9 ± 2,96. U 51 dzieci (78,5%) stężenie 25(OH)D w surowicy krwi wynosiło < 20 ng/ml, BMI = 30,89 ± 5,28, SDS BMI = 4,26 ± 1,91. U 14 dzieci (21,5%) stężenie 25(OH)D w surowicy krwi wynosiło > 20 ng/ml, BMI = 27,87 ± 4,20, SDS BMI = 3,04 ± 1,44. Oceniono korelację pomiędzy stężeniem 25(OH)D w stosunku do parametrów biochemicznych i antropometrycznych: stężenie 25(OH)D było odwrotnie proporcjonalne do SDS BMI, HOMA-IR oraz stężenia insuliny w surowicy krwi na czczo.
Wnioski. U otyłych dzieci występuje negatywna korelacja pomiędzy BMI, HOMA-IR, stężeniem insuliny na czczo a stężeniem 25(OH)D w surowicy krwi.
Summary
Introduction. The prevalence of overweight and obesity is increasing worldwide, particularly among children and adolescents. Investigations report a correlation between serum 25(OH)D level and body mass. Plasma 25(OH)D concentration is lower in obese children than normal-weight children. Recent studies suggest that vitamin D deficiency is associated with higher risk of: impaired glucose tolerance, diabetes mellitus, dyslipidemia, metabolic syndrome, cardiovascular disease and hypertension.
Aim. The aim of the study was to investigate the correlation between serum 25(OH)D level in obese children and their anthropometric and metabolic parameters.
Material and methods. A retrospective analysis of obese patients diagnosed at the Department of Pediatrics and Endocrinology of the Medical University of Warsaw was performed. The study included a total number of 65 obese patients, aged 5-18 and involved the analysis of selected biochemical parameters such as Oral Glucose Tolerance Test (OGTT), fasting blood glucose, insulin, total cholesterol, HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), triglyceride (TG), 25(OH)D. Atherogenic index of plasma (AIP) and HOMA-IR index were calculated and a anthropometric measurements were taken.
Results. Sixty five patients (33 female and 32 male) aged 12.9 ± 2.96 were included in the analysis. In 51 (78.5%) of them serum 25(OH)D level was < 20 ng/ml, BMI = 30.89 ± 5.28, SDS BMI = 4.26 ± 1.91. In 14 children (21.5%) serum 25(OH)D level was > 20 ng/ml, BMI = 27.87 ± 4.20, SDS BMI = 3.04 ± 1.44. The relationship of serum 25(OH)D level to biochemical and anthropometric parameters were as follows: 25(OH)D levels were negatively correlated with SDS BMI, HOMA-IR and fasting insulin level.
Conclusions. For obese children we observe a negative correlation between BMI, HOMA-IR, fasting blood insulin and 25(OH)D serum concentrations.



INTRODUCTION
The prevalence of overweight and obesity is growing worldwide, particularly among children and adolescents and is becoming a global health problem. Several investigators report a correlation between serum 25-hydroxyvitamin D – 25(OH)D – level and body mass. According to recent studies plasma 25(OH)D concentration in obese children is lower than in normal-weight individuals (1, 2). Obesity-associated low serum 25(OH)D concentration is most probably due to the decreased bioavailability of vitamin D which is deposited in adipose tissue (3). Another study demonstrates that seasonal variations of 25(OH)D serum levels are lower in obese children than normal-weight controls (1). This could also be explained by reduced sun exposure in obese individuals (1, 4) as well as unhealthy dietary habits: high-calory food intake poor in vitamins and minerals (1, 5). New guidelines for therapeutic doses of vitamin D (for children with 25(OH)D < 20 ng/ml) are as follows (6):
– neonates (< 1 month) recommended dose of 1000 IU/ day,
– children aged 1-12 months recommended dose of 1000-3000 IU/day,
– children aged 1-18 years recommended dose of 3000-5000 IU/day.
Duration of treatment – about 1-3 months.
Guidelines for daily vitamin D intake for obese children (BMI > 90 percentile for age and gender, with 25(OH)D concentration > 20 ng/ml) (6) – dose of 1200-2000 IU/day, depends on the degree of obesity, it is recommended in the September-April period or throughout the year if no sufficient skin synthesis of vitamin D is ensured during the summer.
AIM
The aim of the study was to investigate the correlation between serum 25(OH)D level and anthropometric and metabolic parameters in obese children with the purpose of assessment whether supplementation of 25(OH)D reduces the risk factors for adult chronic diseases such as: diabetes mellitus, metabolic syndrome, cardiovascular diseases and hypertension.
MATERIAL AND METHODS
A retrospective analysis involved 65 obese patients (BMI > 2 SDS), 33 female and 32 male, aged 5-18 (mean age 12.9 ± 2.96) diagnosed at the Department of Pediatrics and Endocrinology of the Medical University of Warsaw. They were hospitalized for assessment of their metabolic and hormonal status. Anthropometric measurements included: height, weight, waist and hip circumference. Percentiles for weight and height were calculated. Fat mass percentage was obtained from bioimpedance analysis (BIA). BMI (body mass index) used to assess obesity was defined as weight divided by height squared [weight in kg/(height in meters)2]. WHR (waist-to-hip ratio) was defined as the ratio of waist circumference to the hip circumference (cm). WHtR (waist-to-height ratio) was defined as the ratio of waist circumference to height (cm). Both indices were used to assess distribution of body fat. Anthropometric data were standardized according to mean value and standard deviation (SD) for population of Warsaw children to obtain normalized values. Blood samples were collected after overnight fasting. The analysis included biochemical parameters such as 2-hour Oral Glucose Tolerance Test (OGTT) with 1.75 g/kg, max 75 g glucose, including fasting glucose, insulin, total cholesterol, HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), triglyceride (TG), 25(OH)D. The atherogenic index of plasma (AIP) was calculated as the ratio of triglyceridemia to high-density lipoprotein cholesterol (TG/HDL-cholesterol), total cholesterol to high-density lipoprotein cholesterol (TC/HDL-cholesterol), total cholesterol minus high-density lipoprotein cholesterol [(TC) - (HDL-cholesterol)]. Individual HOMA-IR index (homeostasis model assessment – insulin resistance) was calculated for every patient. Blood samples were analyzed in the Department of Laboratory Diagnosis and Clinical Immunology of the Developmental Age of the Medical University of Warsaw.
According to guidelines the 25(OH)D serum level < 20 ng/ml is defined as deficient, 20-30 ng/ml as insufficient and > 30-50 ng/ml as sufficient (6). The number of obese children with sufficient 25(OH)D serum concentration was rather small so for statistical purposes the patients were divided into two subgroups: one subgroup included children with 25(OH)D serum level < 20 ng/ml, the second one included children with 25(OH)D serum level > 20 ng/ml.
The differences between groups were analyzed using the Student’s T-test and Mann-Whitney’s U-test. Differences were considered statistically significant at p < 0.05.
RESULTS

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

24

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

59

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Olson ML, Maalouf NM, Oden JD et al.: Vitamin D Deficiency in Obese Children and Its Relationship to Glucose Homeostasis. J Clin Endocrinol Metab 2012; 97(1): 279-285.
2. Alemzadeh R, Kichler J, Babar G, Calhoun M: Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism 2008; 57(2): 183-191.
3. Wortsman J, Matsuoka LY, Chen TC et al.: Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72: 690-693.
4. Rajakumar K, Fernstrom JD, Holick MF et al.: Vitamin D status and response to vitamin D3 in obese vs. non-obese African American children. Obesity 2008; 16(1): 90-95.
5. Bradlee ML, Singer MR, Qureshi MM, Moore LL: Food group intake and central obesity among children and adolescents in the Third National Health and Nutrition Examination Survey (NHANES III). Public Health Nutr 2010; 13(6): 797-805.
6. Płudowski P, Karczmarewicz E, Bayer M et al.: Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe – recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol 2013; 64(4): 319-327.
7. Alfawaz HA, Abdel Megeid FY: Vitamin D Deficiency in Obese Children and its Relationship to the Components of the Metabolic Syndrome. World Appl Sci J 2013; 21(3): 320-328.
8. Kumar J, Muntner P, Kaskel FJ et al.: Prevalence and Associations of 25-Hydroxyvitamin D Deficiency in US Children: NHANES 2001-2004. Pediatrics 2009; 124: e362-e370.
9. Lenders CM, Feldman HA, von Scheven E et al.: Relation of body fat indexes to vitamin D status and deficiency among obese adolescents. Am J Clin Nutr 2009; 90(3): 459-467.
10. Reinehr T, de Sousa G, Alexy U et al.: Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur J Endocrinol 2007; 157(2): 225-232.
11. Tzotzas T, Papadopoulou FG, Tziomalos K: Rising serum 25-hydroxyvitamin D levels after weight loss in obese women correlate with improvement in insulin resistance. J Clin Endocrinol Metab 2010; 95(9): 4251-4257.
12. Li Z, Yang S, Lin H et al.: Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003; 37(2): 343-350.
13. Kanda H, Tateya S, Tamori Y et al.: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116(6): 1494-1505.
14. Zarrabeitia MT, Riancho JA, Amado JA et al.: Effect of calcitriol on the secretion of prostaglandin E2, interleukin 1, and tumor necrosis factor α by human monocytes. Bone 1992; 13(2): 185-189.
15. Roth CL, Elfers C, Kratz M, Hoofnagle AN: Vitamin D Deficiency in Obese Children and Its Relationship to Insulin Resistance and Adipokines. Journal of Obesity 2011; Volume 2011, 1-7, Article ID 495101. Available from http://dx.doi.org/10.1155/2011/495101.
16. Flores M: A role of vitamin D in low-intensity chronic inflammation and insulin resistance in type 2 diabetes mellitus. Nutr Res Rev 2005; 18: 175-182.
17. Mitri J, Dawson-Hughes B, Hu FB, Pittas AG: Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr 2011; 94: 486-494.
18. Mitri J, Muraru MD, Pittas AG: Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr 2011; 65: 1005-1015.
19. Zeitz U, Weber K, Soegiarto DW et al.: Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J 2003; 17: 509-511.
20. Maestro B, Molero S, Bajo S et al.: Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Func 2002; 20: 227-232.
21. Belenchia AM, Tosh AK, Hillman LS, Peterson CA: Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: a randomized controlled trial. Am J Clin Nutr 2013; 97: 774-781.
22. Kardas F, Kendirci M, Kurtoglu S: Cardiometabolic Risk Factors Related to Vitamin D and Adiponectin in Obese Children and Adolescents. Int J Endocrinol 2013, Volume 2013, 1-5, Article ID 503270. Available from http://dx.doi.org/10.1155/2013/503270.
23. Torun E, Gonullu E, Ozgen IT et al.: Vitamin D Deficiency and Insufficiency in Obese Children and Adolescents and Its Relationship with Insulin Resistance. International Journal of Endocrinology 2013, Volume 2013, 1-5, Article ID 631845. Available from http://dx.doi.org/10.1155/2013/631845.
24. Chiu KC, Chu A, Go VLW, Saad MF: Hypovitaminosis D is associated with insulin resistance and β-cell dysfunction. Am J Clin Nutr 2004; 79(5): 820-825.
25. Kayaniyil S, Retnakaran R, Harris SB et al.: Prospective associations of vitamin D with b-cell function and glycemia. Diabetes 2011; 60: 2947-2953.
26. Greer RM, Rogers MA, Bowling FG et al.: Australian children and adolescents with type 1 diabetes have low vitamin D levels. Med J Aust 2007; 187(1): 59-60.
27. Hyppoenen E, Laara E, Reunanen A et al.: Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001; 358: 1500-1503.
28. Querfeld U, Hoffmann MM, Klaus G et al.: Antagonistic effects of vitamin D and parathyroid hormone on lipoprotein lipase in cultured adipocytes. J Am Soc Nephrol 1999; 10: 2158-2164.
29. Kong J, Li YC: Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab 2006; 290: E916-E924.
30. Wong KE, Szeto FL, Zhang W et al.: Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol Endocrinol Metab 2009; 296: E820-E828.
31. Smotkin-Tangorra M, Purushothaman R, Gupta A et al.: Prevalence of vitamin D insufficiency in obese children and adolescents. J Pediatr Endocrinol Metab 2007; 20(7): 817-823.
32. Botella-Carretero JI, Alvarez-Blasco F, Villafruela JJ et al.: Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clin Nutr 2007; 26: 573-580.
33. Gordon T, Castelli WP, Hjortland MC et al.: High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. Am J Med 1977; 62(5): 707-714.
34. Kendrick J, Targher G, Smits G, Chonchol M: 25-hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis 2009; 205(1): 255-260.
otrzymano: 2014-07-02
zaakceptowano do druku: 2014-09-19

Adres do korespondencji:
*Maria Krajewska
Department of Pediatrics and Endocrinology Independent Public Children’s Clinical Hospital Medical University of Warsaw
ul. Marszałkowska 24, 00-576 Warszawa
tel. +48 (22) 522-74-35
fax +48 (22) 621-41-55
maria.kraj@wp.pl

Postępy Nauk Medycznych 10/2014
Strona internetowa czasopisma Postępy Nauk Medycznych