© Borgis - Postępy Nauk Medycznych 10/2014, s. 708-713
*Aneta Czerwonogrodzka-Senczyna1, Małgorzata Janusz1, Anna Jeznach-Steinhagen1, Beata Pyrżak2
Składniki immunomodulujące i immunostymulujące w diecie dzieci i młodzieży z otyłością prostą
Immunomodulators and immunostimulants in the diet of children and teenagers suffering from simple obesity
1Department of Human Nutrition, Medical University of Warsaw
Head of Department: Dorota Szostak-Węgierek, MD, PhD
2Department of Pediatrics and Endocrinology, Medical University of Warsaw
Head of Department: Beata Pyrżak, MD, PhD
Streszczenie
Wstęp. Prawidłowo zbilansowana dieta pod względem zawartości makroskładników, składników mineralnych oraz witamin jest niezbędna do uzyskania optymalnej odporności.
Cel pracy. Celem pracy była ocena spożycia z dietą składników immunomodulujących oraz immunostymulujących przez dzieci i młodzież z otyłością prostą.
Materiał i metody. Badaniem objęto 100 dzieci i młodzież w wieku 7-18 lat z otyłością prostą. U każdego pacjenta przeprowadzono wywiad dotyczący spożycia produktów i potraw z ostatnich 48 godzin, wykonano pomiary masy i wysokości ciała, wyliczono wskaźnik BMI (ang. body mass index). Na podstawie wywiadu żywieniowego oszacowano spożycie składników pokarmowych, w tym o działaniu immunomodulującym oraz immunostymulującym. Otrzymane wyniki odniesiono do obowiązujących norm.
Wyniki. Średnia realizacja normy na energię w badanej grupie wynosiła 74%, w przypadku białka – 151%. Stosunek kwasów tłuszczowych n-6:n-3 wynosił średnio 10:1. Wśród aminokwasów największą zawartością w diecie cechował się kwas glutaminowy (1450,44 mg/dobę). Odnotowano nieadekwatne do potrzeb spożycie żelaza (77% normy), folianów (42%), witaminy C (84%) oraz likopenu (41%). Realizacja normy na pozostałe składniki przewyższała rekomendowane wartości.
Wnioski. Dieta badanych nie była prawidłowo zbilansowana pod względem zawartości makroskładników oraz składników immunomodulujących, co może się przyczyniać do występowania zaburzeń odporności w tej grupie pacjentów.
Summary
Introduction. A diet balanced for macrocomponents, minerals, and vitamins, is essential to achieving optimal immunity.
Aim. The purpose of this study was to evaluate immunomodulators and immunostimulants in the diet of children and teenagers suffering from simple obesity.
Material and methods. The study involved 100 children and teenagers aged 7-18 suffering from simple obesity. Each patient was interviewed on the products and meals consumed within the last 48 hours, their weight and height measurements were taken, and their Body Mass Index (BMI) was calculated. The estimation of consumed nutrients, including immunomodulators and immunostimulants, was based on the nutrition interview. The obtained results were then related to compared with the nutritional norms in place.
Results. The mean daily calorie intake in the studied group equalled 74%, and for proteins it was 151%. On average, the proportion of n-6:n-3 fatty acids equalled 10:1. For amino acids in the diet the highest intake values were observed for glutamic acid (1450.44 mg/day). The study demonstrated inadequate intake of iron (77% of Recommended Daily Allowance – RDA), folic acids (42% of RDA), vitamin C (84% of RDA) and lycopene (41% of RDA). The mean daily intake of other nutrients exceeded the RDA values.
Conclusions. The diet of the study participants was not properly balanced for macrocomponents and immunomodulators, which may be the reason of immunological disorders and immunodeficiency in this group of patients.
INTRODUCTION
Apart from genetic predispositions for accumulation of body fat the factors that contribute to the development of simple obesity include positive energy balance resulting from excessive food consumption and sedentary lifestyle. Excessive weight and obesity are important risk factors for cardiovascular disease, diabetes, liver disease, and frequent upper respiratory tract infections. Previous studies have shown that infections are more common in obese people than in normal-weight persons. The risk of bacteraemia is also higher for overweight individuals in the case of burns, which may lead to life-threatening infections. The nutritional status has significant impact on the immunological system. Obesity manifests through changes in immunity, particularly in cellular response (1-4).
Human studies have demonstrated excessive body mass to be correlated with impaired activity of immunocompetent cells. Nutritional deficiencies of iron or zinc in obese persons responsible for changes in the immune system, may be reverted by supplementation of these components and restoration of their concentration balance. Researchers point to a direct correlation between the level of obesity and changes in cellular and humoral immunity. Moreover, the T and B lymphocyte response to pathogens proved to be significantly lower in obese persons (4).
Modulation of the immunological response in obese and overweight persons is particularly important, as it may affect the chronic inflammation associated with pro-inflammatory properties of body fat. Recent studies focus on inflammatory markers such as: C-reactive protein (CRP), cytokines (IL-1, IL-6), and tumour necrosis factor (TNF-α). Leptin deficiencies in obese persons lead to T cell proliferative disorders and to simultaneous impairment of cytokine secretion. In patients with normal leptin concentrations, which constitutes most obese persons, an increased tendency to secrete TNF-α and IL-6 in relation to the manifestations of insulin resistance and type 2 diabetes (1).
Following treatment targeted at reduction of body mass, the patients’ health condition improved and asthma-associated symptoms subsided (1, 5).
Dietary components with immunomodulatory and immunostimulating characteristics/properties include: glutamine, arginine, cysteine, n-3 fatty acids, nucleotides, and nutrients, such as: zinc, iron, selenium, B vitamins, vitamin E, vitamin A, vitamin C, glutathione, lycopene, and the components of breast milk (6-8).
AIM
The purpose of the study was to evaluate immunomodulators and immunostimulants in the diet of children and teenagers suffering from simple obesity.
MATERIAL AND METHODS
The study involved a carefully selected group of children and teenagers, aged 7-18 (n = 100), diagnosed with simple obesity.
The study was based on data from direct interview on the participant’s diet in the last 48 hours, as well as information on the level and type of their physical activity.
Information on nutrition/feeding during the first 12 months of life and chronic diseases, including allergies and asthma, were provided by the parents or legal guardians.
For each patient, body mass and height were measured, then used to calculate the Body Mass Index (BMI). BMI calculations were standardised using mean values and standard deviations for the population of Warsaw children. Normalised data (in SDS) were obtained (9).
Diets of study participants were analized according to the „Table of nutritional value of food products and dishes” (10). The energetic and nutritional value of the consumed foods was estimated, with particular emphasis on the percentage of intake of amino acids (arginine, methionine, and glutamic acid), minerals (zinc and iron), vitamins (C, E, A, and B), and n-3 and n-6 fatty acids. The calculation of cysteine and selenium intake was based on the American tables of composition and nutritional values of foods (11). The lycopene intake was calculated from the study by Hamułka and Wawrzyniak (12). The data obtained for each patient were compared to the Recommended Daily Allowance (RDA) values for both genders and different age groups (13), and the rate of conformity was calculated. A Microsoft Excel spreadsheet was used for analysis of questionnaire data and the statistical analysis was performed with Statistica 9.0 software. The level of statistical significance was established at p < 0.05.
RESULTS
In the study group (n = 100), the majority of participants were boys (52%). The highest SDS BMI values were observed for teenagers aged 16-18 years (4.32 ± 1.68). The lowest values were observed for children aged 10-12 years (3.00 ± 0.86) (tab. 1).
Table 1. Segmentation of the study group based on age, gender and SDS BMI values.
Age group | Number of boys | Number of girls | SDS BMI (mean ± SD) |
7-9 years | 11 | 11 | 3.73 ± 1.18 |
10-12 years | 21 | 20 | 3.0 ± 0.86 |
13-15 years | 12 | 7 | 3.64 ± 0.87 |
16-18 years | 8 | 10 | 4.32 ± 1.68 |
SD – standard deviation
88% of the study children were breastfed until the 4-6 month of age. The same percentage of mothers then continued breastfeeding, and 48% of mothers still breastfed their child until 12 months of age, 10% continued breastfeeding for more than 2 years, and 5% for more than 3 years. Just under 40% of children, whose mothers declared that they were breastfed, were diagnosed with food or airborne allergies. A small group of participants (3%) was diagnosed with asthma.
The mean conformity rate with regard to energy intake was 74% for the whole group. The diets of children aged 7-9 years were most often within the range of recommended values. The lowest conformity rates were observed for teenagers aged 16-18 years (tab. 2).
Table 2. Median and range of energy values of consumed food (kcal) and the rate of conformity with the recommended values of diets in various age groups.
Age group | Number of people | Median | Range | Rate of conformity with regard to energy |
7-9 years | 22 | 1642 kcal | 961-3030 kcal | 93.8% |
10-12 years | 41 | 1635 kcal | 701-2882 kcal | 74.0% |
13-15 years | 19 | 1697 kcal | 983-2960 kcal | 66.3% |
16-18 years | 18 | 1783 kcal | 904-2509 kcal | 60.1% |
The mean conformity rate with the recommended values with regard to proteins was 151%. The mean percentage of this component in the total energy value of the consumed food was estimated at 17 ± 4%, on average.
For carbohydrates, the rate of conformity was 172%. The mean percentage of this macrocomponent in the total energy value of the consumed food was 50 ± 7.38%.
On average, 88% of the recommended values for fat was consumed. The percentage of energy obtained from this component was 33 ± 7%. The mean intake of n-3 polyunsaturated fatty acids was 1 g/day and of n-6, 10 g/day. The mean proportion of n-6:n-3 fatty acids equalled 10:1.
Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
- Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
- Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
- Aby kupić kod proszę skorzystać z jednej z poniższych opcji.
Opcja #1
24 zł
Wybieram
- dostęp do tego artykułu
- dostęp na 7 dni
uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony
Opcja #2
59 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 30 dni
- najpopularniejsza opcja
Opcja #3
119 zł
Wybieram
- dostęp do tego i pozostałych ponad 7000 artykułów
- dostęp na 90 dni
- oszczędzasz 28 zł
Piśmiennictwo
1. Matarese G, La Cava A: Immune responses in obesity models. Drug Discov Today: Disease Models 2005; 3: 177-181.
2. Kumari S, Chandra RK: Overnutrition and immune responses. Nutr Res 1993; 1: 3-18.
3. Nieman DC, Henson DA, Nehlsen-Cannarella SL: Influence of Obesity on Immune Function. J Am Diet Assoc 1999; 3: 294-299.
4. Samartin S, Chandra RK: Obesity, overnutrition and the immune system. Nutr Res 2001; 21: 243-262.
5. Shore SA, Johnston RA: Obesity and asthma. Pharmacol Ther 2006; 110: 83-102.
6. Wichers H: Immunomodulation by food: promising concept for mitigating allergic disease? Anal Bioanal Chem 2009; 1: 37-45.
7. McCowen KC, Bistrian BR: Immunonutrition: problematic or problem solving? Am J Clin Nutr 2003; 77: 764-770.
8. Evoy D, Lieberman M, Fahey TJ 3rd, Daly JM: Immunonutrition: The role of arginine. Nutrition 1998; 14: 611-617.
9. Palczewska I, Niedźwiecka Z: Somatic development indices in children and youth of Warsaw (in Polish). Med Wieku Rozwoj 2001; 5 (2 suppl. 1): 18-118.
10. Kunachowicz H, Nadolna I, Przygoda B, Iwanow K: Tables of nutritional value of food products and dishes (in Polish). 3rd ed., PZWL, Warszawa 2005.
11. United States Department of Agriculture. The USDA National Nutrient Database for Standard Reference. 2011. http://fnic.nal.usda.gov/food-composition/usda-nutrient-data-laboratory. Accessed 12 January 2014.
12. Hamułka J, Wawrzyniak A: Lycopene and lutein – the pro-health role and content in products (in Polish). SGGW, Warszawa 2004.
13. Jarosz M, Bułchak-Jachymczyk B: Standards of human nutrition. Fundamentals of prevention of obesity and non-communicable diseases (in Polish). PZWL, Warszawa 2008.
14. Collison KS, Zaidi MZ, Subhani SN et al.: Sugar-sweetened carbonated beverage consumption correlates with BMI, waist circumference, and poor dietary choices in school children. BMC Public Health 2010; 10: 234.
15. Berkey CS, Rockett HR, Field AE et al.: Activity, dietary intake, and weight changes in a longitudinal study of preadolescent and adolescent boys and girls. Pediatrics 2000; 4: 56-64.
16. Burrows T, Golley RK, Khambalia A et al.: The quality of diet intake methodology and reporting in children and adolescent obesity intervention trials: a systematic review. Obes Rev 2012; 13: 1125-1138.
17. Velasco J, Mariscal-Arcas M, Rivas A et al.: Assessment of the diet of school children from Granada and influence of social factors. Nutr Hosp 2009; 24: 193-199.
18. Simopoulos AP: The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002; 8: 365-379.
19. Dry J, Vincent D: Effect of a fish oil diet on asthma: results of a 1-year double-blind study. Int Arch Allergy Immunol 1991; 95: 156-157.
20. Newsholme P, Curi R, Pithon Curi TC et al.: Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J Nutr Biochem 1999; 10: 316-324.
21. Roth E: Immune and cell modulation by amino acid. J Clin Nutr 2007; 26: 535-544.
22. Kuvibidila S, Baliga BS: Role of iron in immunity and infection. [In:] Calder P, Field C, Gill H (eds): Nutrition and Immune Function. CABI Publishing in association The Nutrition Society. New York, NY, USA 2002: 209-228.
23. LeBoeuf RA, Hoekstra WG: Adaptive changes in hepatic glutathione metabolism in response to excess selenium in rats. J Nutr 1983; 113: 845-854.
24. Beisel WR: Nutrition and immune function: overview. J Nutr 1996; 126: 2611-2615.
25. Tamura T, Picciano MF: Folate and human reproduction. Am J Clin Nutr 2007; 83: 993-1016.
26. Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nature Rev Genet 2002; 3: 415-428.
27. Beisel WR: Single nutrients and immunity. Am J Clin Nutr 1982; 35: 417-468.
28. Noh K, Lim H, Moon SK et al.: Mega-dose Vitamin C modulates T cell function in Balb/c mice only when administrated T cell activation. Immunol Lett 2005; 1: 63-72.
29. Mitchell B, Ulrich C, McTiernan A: Supplementation with vitamins or mineral and immune function: can the elderly benefit? Nutr Res 2003; 23: 1117-1139.
30. Rao AV, Rao LG: Carotenoids and human health. Pharmacol Res 2007; 55: 207-216.
31. Chew BP: Role of Carotenoids in the Immune Response. J Dairy Sci 1993; 9: 2804-2811.
32. Stuebe A: The Risks of not breastfeeding for mothers and infants. Rev Obstet Gynecol 2009; 2: 222-231.
33. Owen CG, Martin RM, Whincup PH et al.: Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 2005; 115: 1367-1377.
34. Brandtzaeg P: Role of local immunity and breast-feeding in mucosal homoeostasis and defence against infections. [In:] Calder P, Field C, Gill H (eds): Nutrition and Immune Function. CABI Publishing in association The Nutrition Society: New York, NY, USA, 2002: 273-320.