Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu
© Borgis - Postępy Nauk Medycznych 10/2009, s. 794-798
André Klassen1, Udo Bahner2, Katarina Sebekova3, *August Heidland1, 2
Modern forms of electrostimulation: effects on pain, metabolism and muscle function**
Nowoczesne sposoby elektrostymulacji: wpływ na nasilenie bólu, przemiany metaboliczne oraz czynność mięśni
1Department of Internal Medicine, University of Würzburg, Würzburg, Germany
2KfH-Kidney Centre Würzburg, Würzburg, Germany
3Department of Clinical and Experimental Pharmacotherapy, Slovak Medical University, Bratislava, Slovakia
In the non-pharmacological treatment of pain, due to diabetic peripheral neuropathy and painful peripheral artery disease, electrical stimulation in the form of transcutaneous electrical nerve stimulation (TENS) as well as spinal cord stimulation (SCS) have been reported to markedly improve the neuropathic symptoms. In a clinical setting the high-tone external muscle stimulation (HTEMS) was shown to be more effective than TENS in the short-term. In the long-run, HTEMS leads to an improvement in the peripheral neuropathy of up to 70% of diabetic patients, which corresponds to its success rate in patients with end-stage renal disease and diabetic and/or uremic peripheral neuropathy. Additionally, HTEMS lowered the body weight and the hemoglobin A1C of diabetic patients. Numerous studies showed that functional electrical stimulation (FES) improves sarcopenia.
Stymulacja elektryczna w postaci przezskórnej, elektrycznej stymulacji nerwów (TENS – transcutaneous electrical nerve stimulation), jak również stymulacji w obrębie rdzenia kręgowego (SCS – spinal cord stimulation) znajdują zastosowanie w niefarmakologicznym leczeniu bólu, zwłaszcza u chorych z obwodową neuropatią cukrzycową lub w przebiegu chorób tętnic obwodowych. W ostatnich latach wykazano, że stymulacja elektryczna nerwów w znaczący sposób zmniejsza nasilenie objawów neuropatycznych u tych chorych. W praktyce klinicznej wykazano jednak, że krótkotrwałe zastosowanie zewnętrznej stymulacji mięśni o wysokiej częstotliwości (HTEMS – high tone extremal muscle stimulation) umożliwia uzyskanie lepszych wyników niż metoda TENS. Również przy długotrwałym zastosowaniu HTEMS uzyskano zmniejszenie objawów obwodowej neuropatii u chorych na cukrzycę aż o 70%. Podobne, korzystne wyniki uzyskano u chorych z mocznicową neuropatią obwodową w przebiegu cukrzycowej lub niecukrzycowej schyłkowej niewydolności nerek. Ponadto zastosowanie HTEMS umożliwia zmniejszenie masy ciała oraz stężenia hemoglobiny A1c we krwi u chorych na cukrzycę. W licznych badaniach wykazano również, że tzw. frakcjonowana stymulacja elektryczna (FES – factional electrical stimulation) zapobiega utracie masy mięśni.

Persistent pain is an important health problem. Based on representative samples (age range: 18-65 years) in 15 centres in Asia, Africa, Europe and the Americas, the prevalence of persistent pain averaged 22%. The most common forms were: back pain (47.8%), headaches (45.2%) and joint aches (41.7%). A characteristic feature of chronic pain is the loss of quality of life, mainly due to psychological illness and limitations in daily activities (1).
In diabetic patients pain is a particularly frequent and severe problem. As a consequence of the metabolic derangement, symptomatic peripheral neuropathy developed in 16.2% of a community based sample of diabetics, while in the non-diabetics, the prevalence was 5% (2). Advanced neuropathic deficits are in many cases a forerunner of foot ulcers and amputations. The prevalence of peripheral neuropathy is related to the duration of diabetes (2). In a large United Kingdom hospital population study, there was also a clear association with patient age (3). In the age group 70-79 years the prevalence of peripheral neuropathy was 44.2%. In the U.S. population, symptoms of neuropathy affected up to a third of adults with non-insulin dependent diabetes mellitus (4).
In end-stage renal failure, more than 50% of patients complain of pain symptoms. Among the causes, musculoskeletal disorders dominate. Peripheral neuropathy and pain from peripheral vascular ischemia average about 13% and 10%, respectively (5).
In the treatment of pain, electro-medical approaches were implemented as early as the 5th century BC. Plato (427-347 BC) and Aristotle (384-322 BC) discovered that contact with the ”black torpedo”, an electric ray fish, has pain-relieving properties. These fish are capable of generating electrical charges of up to 220 V (6).
In modern medicine, the most frequently non-pharmacological methods in pain treatment are: the transcutaneous electrical nerve stimulation (TENS), the percutaneous electrical nerve stimulation (PENS), functional electrical stimulation (FES), and the spinal cord stimulation (SCS).
In the first form of electro-medical therapy, TENS, a battery-powered electrical unit with electrodes is placed on the skin, above the underlying, painful nerve fibres. The therapy was shown to be very effective in patients with painful peripheral diabetic neuropathy (7). In a placebo-controlled, randomised study, a beneficial effect of TENS was observed in patients with diabetic neuropathy (8). In another study by the same research group, it was demonstrated that TENS may be ”a useful adjunctive modality” in combination with a pharmacological agent, i.e. amitriptyline (9). In this group of patients, about 85% reported symptom improvement. An analgetic effect of electrotherapy was also reported in patients suffering from pain associated with arthritis and rheumatological conditions (10).
PENS, another kind of electro-medical stimulation, combines both TENS and electroacupuncture-like needle probes (”transcutaneous hyperstimulation”) to stimulate sensory nerves innervating the region of neuropathy. In a sham-controlled cross-over study, it lowered extremity pain and improved physical activity (7).
Functional electrical stimulation (FES) employs electrical currents to activate nerves which innervate extremities affected by paralysis resulting from spinal cord injury, head injury, stroke or other neurological disorders, i.e. to restore function in people with disabilities (11).
A very effective form of electrostimulation in chronic pain is the spinal cord stimulation (SCS). Here, an epidural electrode is placed in an appropriate spinal cord segment and connected with a permanent pulse generator in the flank. A relief of pain symptoms has been described in severe diabetic neuropathy, painful ischemic peripheral artery disease, phantom limb pain, and refractory angina pectoris. SCS has been successfully used in patients with peripheral artery occlusive disease, i.e. in patients unsuitable for vascular reconstruction. It markedly reduced pain and may delay or even prevent the amputation of extremities (12).
The effect of SCS has been evaluated in 8 chronic hemodialysis patients with critical lower limb ischemia (Leriche-Fontaine stage 3 or 4). A dramatic lowering of pain, an improved quality of life and a noteworthy reduction in the use of pain medication could be observed. The benefits persisted for a further 6-12 months. The authors assume that an earlier treatment of peripheral artery occlusive disease (Leriche-Fontaine stage 2 or 3) might delay the amputation of extremities of dialysis patients (13). The favourable effects of SCS could be attributed to a vasodilating effect, on the one hand, as demonstrated by an improved microvascular blood flow in severe limb ischemia (14). On the other hand, it has been suggested that electrical stimulation activates the dorsal columns and inhibits C-fibres with a subsequent decrease in pain perception (15).
Comparably beneficial actions could be achieved by SCS in patients with intractable angina pectoris, for whom angioplasty or coronary bypass graft surgery could not be performed. The results showed a reduction of angina, an enhanced exercise capacity, less ST segment depression and improvement of myocardial blood flow (16). The treatment was as effective as coronary artery bypass surgery (17). The beneficial long-term effects of SCS on angina were recently underlined (18).
However, SCS therapy is not without complications. In 3-4% there is an SCS device failure. Infections occur in 3-5% of patients implanted with such a device. The most common complication (11-36%) concerns external electrode dislocation and breaks. Further complications include cerebrospinal fluid leak (1%) and meningitis (0.5%) (19).
High-tone external muscle stimulation (HTEMS)
An innovative type of electrotherapy is the so-called ”high-tone external muscle stimulation” (HTEMS). In this special electro-medical approach, the electrical frequency varies in short intervals (3 sec.) between 4100 and 33 000 Hz. Another novelty of this method is the fact that amplitude and electrical frequency are modulated simultaneously.
The mechanisms behind the efficacy of HTEMS are still not fully understood. It is hypothesized that at the high frequency the smaller charged molecules in the muscle tissue fluids may resonate and oscillate, while the larger charged molecules may do so at the low frequency. These oscillations may enhance blood flow, metabolic processes and accelerate the removal of waste products and inflammatory cytokines.
There are only a few contraindications of HTEMS: e.g. active bacterial infections, presence of a pacemaker, pregnancy, recent fractures, acute thrombosis, epilepsy and implants.
HTEMS effects in patients with diabetic peripheral neuropathy
In a direct comparison between TENS and HTEMS, the HTEMS was nearly 3 times as effective as the TENS. In this study of the German Diabetes Institute in Düsseldorf, diabetic patients were treated in a randomised fashion with one of the two electrotherapies (30 min) on 3 consecutive days (20). These results were confirmed and extended at the University of Heidelberg. Here, 92 type 2 diabetic patients with different neuropathic symptoms were included in a prospective uncontrolled trial. The patients were treated twice weekly for a total of 4 weeks with HTEMS, whereby the symptoms were graded on numeric scales at baseline, before the second and the eighth visit. A marked improvement of symptoms (pain, paresthesia, numbness, burning sensation, and sleeping disturbance) was documented in 73% of the patients. This subjective treatment response was positively and directly associated with symptom intensity but independent of disease extent, metabolic factors, age, or gender. Patients in the upper tertile of symptom intensity showed significant improvement of paresthesia, pain, numbness and most pronounced for burning sensations and sleeping disturbances. The authors concluded that HTEMS ”seems to be an effective treatment for symptomatic neuropathy in patients with type 2 diabetes, especially in patients with strong symptoms” (21).
Effects of HTEMS in peripheral neuropathy of patients with end-stage renal disease
We performed a non-controlled, multi-centre study on the effect of HTEMS in a total of 40 hemodialysis patients with symptomatic peripheral polyneuropathy (PPN) (25 with diabetic and 15 with uremic PPN). Both lower extremities were treated intradialytically with HTEMS for 30-60 minutes, three times a week. The patients´ degree of neuropathy was graded at baseline before and after 3 months of HTEMS treatment, using the 10-point Neuropathic Pain Scale of Galer and Jensen (Neurology 48:332-338, 1997). Five neuropathic symptoms (pain, tingling, burning, numbness, numbness in painful areas) as well as sleep disturbances were measured. A positive response was defined as the improvement of one symptom or more, by at least 3 points. HTEMS led to a significant improvement in all five neuropathic symptoms, and to a significant reduction in sleep disturbances for both diabetic and uremic PPN. The responder rate of 73%t was independent of the patients´ age. This pilot study showed for the first time that HTEMS can ameliorate the discomfort and pain associated with both diabetic and uremic PPN in hemodialysis patients, and could be a valuable supplement in the treatment of their pain and neuropathic discomfort (22). These findings have recently been confirmed by the research group of Prof. Guido Bellinghieri (Messina, Italy, personal communication).
Effects of HTEMS on metabolism and muscle function

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1


  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3


  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
1. Gureje O et al.: Persistent pain and well-being: a World Health Organization Study in primary care. JAMA 1998; 280: 147-151.
2. Daousi C et al.: Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabetic Medicine 2004; 21: 976-982.
3. Young MJ et al.: A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdowm hospital clinic population. Diabetologia 1993; 36: 150-154.
4. Harris M, Eastman R, Cowie C: Symptoms of sensory neuropathy in adults with NIDDM in the U.S. population. Diabetes Care 1993; 16: 1446-1452.
5. Davison SN: Pain in hemodialysis patients: prevalence, cause, severity, and management. Am J Kidney Dis 2003; 42: 1239-1247.
6. Southworth S: A study of the effects of cranial electrical stimulation on attention and concentration. Integr Physiol Behav Sci 1999; 34: 43-53.
7. Hamza MA et al.: Percutaneous electrical nerve stimulation: a novel analgesic therapy for diabetic neuropathic pain. Diabetes Care 2000; 23: 365-370.
8. Kumar D, Marshall HJ: Diabetic peripheral neuropathy: amelioration of pain with transcutaneous electrostimulation. Diabetes Care 1997; 20: 1702-1705.
9. Kumar D et al.: Diabetic peripheral neuropathy. Effectiveness of electrotherapy and amitriptyline for symptomatic relief. Diabetes Care 1998; 21: 1322-1325.
10. Neumann V: Electrotherapy. Br J Rheumatol 1993; 32: 1-2.
11. Crago PE et al.: New control strategies for neuroprosthetic systems. J Rehabil Res Dev 1996; 33: 158-172.
12. Oakley JC, Prager JP: Spinal cord stimulation: mechanisms of action. Spine 2002; 27: 2574-2583.
13. Brümmer U et al.: Spinal cord stimulation in hemodialysis patients with critical lower-limb ischemia. Am J Kidney Dis 2006; 47: 842-847.
14. Jacobs MJ et al.: Epidural spinal cord electrical stimulation improves microvascular blood flow in severe limb ischemia. Ann Surg 1988; 207: 179-183.
15. Watkins ES, Koeze TH: Spinal cord stimulation and pain relief. BMJ 1993; 307: 462.
16. Mannheimer C et al.: Epidural spinal electrical stimulation in severe angina pectoris. Br Heart J 1988; 59: 56-61.
17. Mannheimer C et al.: Electrical stimulation versus coronary artery bypass surgery in severe angina pectoris: the ESBY Study. Circulation 1998; 97: 1157-1163.
18. Eckert S, Horstkotte D: Management of angina pectoris: the role of spinal cord stimulation. Am J Cardiovasc Drugs 2009; 9: 17-28.
19. Klomp HM et al.: Spinal-cord stimulation in critical limb ischaemia: a randomised trial. ESES Study Group. Lancet 1999; 353: 1040-1044.
20. Reichstein L et al.: Effective treatment of symptomatic diabetic polyneuropathy by high-frequency external muscle stimulation. Diabetologia 2005; 48: 824-828.
21. Humpert PM et al.: External electric muscle stimulation improves burning sensations and sleeping disturbances in patients with type 2 diabetes and symptomatic neuropathy. Pain Med 2009; 10: 413-419.
22. Klassen A et al.: High-tone external muscle stimulation in end-stage renal disease: effects on symptomatic diabetic and uremic peripheral neuropathy. J Ren Nutr 2008; 18: 46-51.
23. Andreassen CS et al.: Accelerated atrophy of lower leg and foot muscles – a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia 2009; 52: 1182-1191.
24. Park SW et al.: Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009 Jun 23. [Epub ahead of print].
25. Houmard JA et al.: Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 2004; 96: 101-106.
26. Petersen AM, Perdersen BK: The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98: 1154-1162.
27. Martin TP et al.: Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J Appl Physiol 1992; 72: 1401-1406.
28. Hamada T et al.: Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J Appl Physiol 2004; 96: 911-916.
29. Chilibeck PD et al.: Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism 1999; 48: 1409-1413.
30. Rose B et al.: Beneficial effects of external muscle stimulation on glycaemic control in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 2008; 116: 577-581.
31. AlZadjali MA et al.: Insulin resistance is highly prevalent and is associated with reduced exercise tolerance in nondiabetic patients with heart failure. J Am Coll Cardiol 2009; 53: 747-753.
32. Nuhr MJ et al.: Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur Heart J 2004; 25: 136-143.
33. Harris S et al.: A randomized study of home-based electrical stimulation of the legs and conventional bicycle exercise training for patients with chronic heart failure. Eur Heart J 2003; 24: 871-878.
34. Stenvinkel P, Lindholm B, Heimbürger O. Novel approaches in an integrated therapy of inflammatory-associated wasting in end-stage renal disease. Semin Dial 2004; 17: 505-515.
35. Ikizler TA et al.: Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am J Physiol Endocrinol Metab 2002; 282: E107-E116.
36. Siew ED et al.: Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int 2007; 71: 146-152.
37. Sietsema KE et al.: Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney Int 2004; 65: 719-724.
38. Storer TW et al.: Endureance exercise training during haemodialysis improves strength, power, fatigability and physical performance in maintenance haemodialysis patients. Nephrol Dial Transplant 2005; 20: 1429-1437.
39. Cheema BSB et al.: Progressive resistance training during hemodialysis: rationale and method of a randomized-controlled trial. Hemodialysis International 2006; 10: 303-310.
otrzymano: 2009-07-17
zaakceptowano do druku: 2009-09-02

Adres do korespondencji:
*August Heidland
Department of Internal Medicine, University of Würzburg and KfH-Kidney Centre Würzburg
Hans-Brandmann-Weg 1, 97080 Würzburg
tel.: +49-931-299-9672, fax: +49-931-299-9673
e-mail: August.Heidland@t-online.de

Postępy Nauk Medycznych 10/2009
Strona internetowa czasopisma Postępy Nauk Medycznych

Pozostałe artykuły z numeru 10/2009: