Ponad 7000 publikacji medycznych!
Statystyki za 2021 rok:
odsłony: 8 805 378
Artykuły w Czytelni Medycznej o SARS-CoV-2/Covid-19

Poniżej zamieściliśmy fragment artykułu. Informacja nt. dostępu do pełnej treści artykułu tutaj
© Borgis - Postępy Nauk Medycznych 4/2017, s. 233-236
*Tomasz Roman1, Maciej Szajner1, Klaudia Karska1, Justyna Markowicz-Roman2, Katarzyna Hać1, Ewa Kramarz1, Łukasz Światłowski1, Małgorzata Szczerbo-Trojanowska1
Radiation exposure in interventional neuroradiology
Narażenie na promieniowanie rentgenowskie w neuroradiologii interwencyjnej
1Department of Interventional Radiology and Neuroradiology, Medical University in Lublin
Head of Department: Professor Małgorzata Szczerbo-Trojanowska, MD, PhD
2Department of Clinical Immunology, Medical University in Lublin
Head of Department: Professor Jacek Roliński, MD, PhD
Streszczenie
Ciągły rozwój neuroradiologii interwencyjnej wpływa na wzrost liczby procedur, a także w niektórych przypadkach na wydłużenie czasu zabiegów. Istnieje szereg czynników mogących wpływać na całkowite narażenie na promieniowanie rentgenowskie podczas neuroembolizacji. Obserwuje się różne skutki uboczne, pojawiające się w zależności od dawki oraz czasu narażenia. W tym opracowaniu przeglądowym pod uwagę będą brane sposoby pomiaru dawki właściwe dla ramienia C. Zrozumienie ich rodzajów, definicji oraz zastosowań praktycznych jest bardzo istotne dla operatora przy ocenie i kontroli narażenia pacjenta na promieniowanie rentgenowskie. Ważne jest także dokumentowanie dawek, nie tylko w celu świadomego zwiększania bezpieczeństwa pacjenta, ale także jako informacji zwrotnej dla lekarza. Ocena trudności zabiegu powinna zawierać także szacunkową ocenę pod kątem możliwego ryzyka związanego z promieniowaniem. Operator powinien mieć także podstawową wiedzę w zakresie epidemiologii chorób związanych z narażeniem na promieniowanie rentgenowskie.
Summary
Constant development of interventional neuroradiology procedures increases number and sometimes length of vascular interventions. There are several factors that have impact on total radiation dose during neuroembolization. Reaction of human body to radiation exposure may be different. In general, it depends on severity of exposure and time in which it occurs. In this review, only dose measurements applicable for C-arm devices will be taken for consideration. There are several methods for x-ray use assessment during interventional neuroradiology procedures. This is important for operating physician to understand their definitions and practical implications for most appropriate dose control during procedures. Most important reasons for recording of patient dose are patients safety and dose optimization as a feedback to the operator. The procedures with potentially high dose risk may be enlisted and performed with greater awareness. Increasing awareness of epidemiological data on radiation-induced diseases should improve dose management.
Introduction
Interventional neuroradiology is fast developing branch of medicine providing various endovascular techniques for treatment of brain vascular diseases. Both materials and radiological equipment are constantly improving. However, the risks connected with exposure to radiation are still important limitation of such approach.
There are several factors that have impact on total radiation dose during neuroembolization. Those may be related directly to patient or to operating techniques and equipment. They are summarized in table 1. Increasing awareness of side effects of radiation and undertaking efforts to optimize x-ray use is important part of radiologists practice.
Tab. 1. Risk factors concerning radiation of interventional neuroradiology patient
Radiation risks related to patientRadiation risks related to operating techniques and equipment
AgePosition of a table
SexCollimation
WeightFrames per second
Prior history of radiationImage quality presets
Specific area – brain, covered with skullArea of imaging
 Biplane vs monoplane, including overlying of fields
 Learning curve
Effects of radiation
Reaction of human body to radiation exposure may be different. In general, it depends on severity of exposure and time in which it occurs. For academic purposes, these health consequences may be divided into stochastic and deterministic effects. The severity of stochastic effects does not depend on total dose absorbed, but the chance of incidence increases along with amount of radiation. The key examples of stochastic effects of radiation are cancers, in that case as radiation-induced. Deterministic effects, in the other hand, are correlated positively with received dose. The threshold dose can be defined for them, keeping in mind that it can be variant depending on particular cases. After exceeding a individual threshold level, damage appears accordingly to increasing dose. Most common deterministic effects to observe in neuroradiology suite are skin injury, hair loss and erythema.
Dose measurement
In this review, only dose measurements applicable for C-arm devices will be taken for consideration. There are several methods for x-ray use assessment during interventional neuroradiology procedures. This is important for operating physician to understand their definitions and practical implications for most appropriate dose control during procedures.
The fluoroscopy time, as well as total images count may be related to patient dose, but they can vary between different procedures with the same effective dose. Information about fluoroscopic dose rate and the dose per image must be also provided. The fluoroscopy time and fluoroscopic images count are considered to be least relevant for dose monitoring.
Kerma-area product (PKA) is another commonly available indicator for most of the angiographic suites. It is defined as “integral of air kerma across the entire x-ray beam emitted from the x-ray tube” (1). PKA is measured in Gy·cm2. The scatter is usually not included in the given value, which is usually measured by fluoroscope. This value represents total radiation energy entering the patient. It is approved by International Commission on Radiation Units and Measurements (ICRU) commission as indicator of future probability of stochastic effects to the patient. There are observations proving that PKA correlates also with staff dose. However, this parameter is not considered to be good indicator of deterministic effects.
Reference air kerma (Ka,r), also know an reference point air kerma (called cumulative dose or cumulative air kerma) represents air kerma that is being concentrated at the interventional reference point. This radiation measurement does not include backscatter from the patient. The value is given in Grays (Gy) and it can be measured by most fluoroscopic units. The interventional reference point (also known as patient entrance reference point) for C-arm is located 15 cm from its isocenter towards the x-ray tube. The Ka,r is considered to be an estimation value for skin dose, however some observations suggests that it may overestimate the risks (2). Important limitation there is that the interventional reference point may be located at different distance from the patient’s skin, depending on the table height, beam angle, as well as dimensions of current individual. This is main source of estimation while using Ka,r as skin dose measurement.

Powyżej zamieściliśmy fragment artykułu, do którego możesz uzyskać pełny dostęp.
Mam kod dostępu
  • Aby uzyskać płatny dostęp do pełnej treści powyższego artykułu albo wszystkich artykułów (w zależności od wybranej opcji), należy wprowadzić kod.
  • Wprowadzając kod, akceptują Państwo treść Regulaminu oraz potwierdzają zapoznanie się z nim.
  • Aby kupić kod proszę skorzystać z jednej z poniższych opcji.

Opcja #1

19

Wybieram
  • dostęp do tego artykułu
  • dostęp na 7 dni

uzyskany kod musi być wprowadzony na stronie artykułu, do którego został wykupiony

Opcja #2

49

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 30 dni
  • najpopularniejsza opcja

Opcja #3

119

Wybieram
  • dostęp do tego i pozostałych ponad 7000 artykułów
  • dostęp na 90 dni
  • oszczędzasz 28 zł
Piśmiennictwo
1. Stecker MS, Balter S, Towbin RB et al.: SIR Safety and Health Committee; CIRSE Standards of Practice Committee. Guidelines for patient radiation dose management. J Vasc Interv Radiol 2009; 20(7 Suppl): S263-73.
2. Miller DL, Balter S, Cole PE et al.: Radiation doses in interventional radiology procedures: the RAD-IR study part II. Skin dose. J Vasc Interv Radiol 2003; 14: 977-990.
3. National Council on Radiation Protection and Measurements. Radiation dose management for fluoroscopically guided interventional medical procedures. Report No. 168. Bethesda, MD: NCRP, 2011.
4. Miller DL, Balter S, Wagner LK et al.: Quality improvement guidelines for recording patient radiation dose in the medical record. J Vasc Interv Radiol 2004; 15: 423-429.
5. ICRP Statement on Tissue Reactions/Early and Late Effects of Radiation in Normal Tissues and Organs-Threshold Doses for Tissue Reactions in a Radiation Protection Context. ICRP Publication 118. Ann. ICRP 41(1/2) 2012.
6. Shimizu Y, Kodama K, Nishi N et al.: Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ 2010; 14: 340:b5349.
7. American College of Radiology. ACR-SIR Practice Guideline for the Reporting and Archiving of Interventional Radiology Procedures. Reston, VA: American College of Radiology, 2009.
8. European Commission. COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Available at http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=OJ:L:2014:013:TOC Accessed February 27.09.2014.
9. Sanchez RM, Vano E, Fernández JM et al.: Brain radiation doses to patients in an interventional neuroradiology laboratory. AJNR Am J Neuroradiol 2014; 35(7): 1276-1280.
10. Thierry-Chef I, Simon SL, Land CE et al.: Radiation dose to the brain and subsequent risk of developing brain tumors in pediatric patients undergoing interventional neuroradiology procedures. Radiat Res 2008; 170: 553-565.
11. Vance AZ, Weinberg BD, Arbique GM et al.: Fluoroscopic sentinel events in neuroendovascular procedures: how to screen, prevent, and address occurrence. AJNR Am J Neuroradiol 2013; 34(8): 1513-1515.
12. National Council on Radiation Protection and Measurements. Radiation Dose Management for Fluoroscopically-Guided Interventional Medical Procedures. Bethesda, Maryland: National Council on Radiation Protection and Measurements; 2010. NCRP Report No. 168.
otrzymano: 2017-03-02
zaakceptowano do druku: 2017-03-24

Adres do korespondencji:
*Tomasz Roman
Department of Interventional Radiology and Neuroradiology Medical University in Lublin
ul. K. Jaczewskiego 8, 20-954 Lublin
tel. +48 (81) 724-41-54 fax +48 (81) 724-48-00
tomek.gov@gmail.com

Postępy Nauk Medycznych 4/2017
Strona internetowa czasopisma Postępy Nauk Medycznych